BITS PILANI, DUBAI CAMPUS

Dubai International Academic City, Dubai, UAE

Semester II 2013-2014

COMPREHENSIVE EXAMINATION (Closed Book)

BE (Hons) IV year EIE/ III CHEM

Course No

: INSTR C451 / INSTR F342

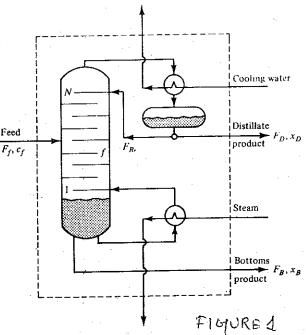
Course Title

: PROCESS CONTROL / PROCESS DYNAMICS & CONTROL

Date

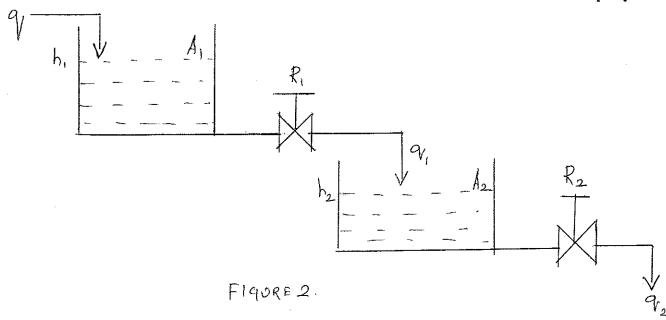
: 29.05.14

Time: 3Hours


M.M = 80 (40%)

NOTE: 1. All the symbols and words carry their usual meanings, unless otherwise stated.

2. Total No of Pages.2, No of Questions. 8


3. Answer all the questions sequentially

1. Find the total no of variables, total no of equations & the degrees of freedom for the binary distillation column shown in Figure 1 [10M]

2 Consider the tanks shown in Figure 2.Find the over all transfer function for a unit step input.

[10M]

3. Draw the root locus of a closed loop system with the following characteristics:

Process:
$$G_p(s) = \frac{K(s+1)}{s^2(s+5)}$$
.
Final control element: $G_f(s) = 1$

[10M]

4. Consider a process model which has the open loop transfer function with a unity feed back system

$$G(s) = \frac{K}{s(1+0.5s)(1+5s)}$$

Sketch the polar plot in graph sheet and determine the phase margin & gain margin. (Assume the frequencies as 0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 10 rad/sec)

[10M]

5. Draw the Bode plot (in the graph sheet) for the open loop transfer function with the following dynamic components:

 $G_p(s) = \frac{100}{s(1+0.2s)(1+0.02s)}$; $G_f(s) = 1$

and determine (1) gain cross over frequency (2) phase cross over frequency (3) Phase Margin (4) Gain margin. (Assume Lower frequency = 0.1 rad/ sec; Higher frequency = 100 rad/sec) [10M]

6. A step input of '3' is applied to a unity feedback system with $G(s) = \frac{6}{s(s+5)}$.

Find the response of the process control system.

[10M]

- 7A. Under what condition we should select FFC + FBC system.
- 7B. What is meant by inferential complex control?
- 7C. Inverse response otherwise called as
- 7D. What is the response of pure capacitive process for the unit ramp input?
- 7E. For the second order system given below, if we introduce a unit step change in the input then what will be the percentage overshoot of the response? [5*2=10M]

$$G(s) = \frac{1}{s^2 + s + 1}$$

8A. The open loop transfer function of a unity feedback system is $G(s) = \frac{4}{s(s+1)}$

Determine the nature of the response of the closed loop system for a unit step input. Also determine the rise time, peak time, peak overshoot and settling times. [5M]

8B. The open loop transfer function of a unity feedback process control system is given by

$$G(s) = \frac{K}{s(1+as)(1+bs)}.$$

Derive an expression for the gain 'K' in terms of 'a' and 'b' for the stability of the system.

[5M]

ALL THE BEST

BITS, PILANI - DUBAI

Dubai International Academic City, Dubai, UAE

Semester II 2013-2014

TEST II / (Open Book)
BE (Hons) IV year EIE / III CHEM

Course No

: INSTR C451 / INSTR F342

Course Title

: PROCESS CONTROL / PROCESS DYNAMICS & CONTROL

Date

: 29.04.14

Time: 50 Minutes

M.M = 20 (20%)

NOTE: 1. All the symbols and words carry their usual meanings, unless otherwise stated.

2. Answer all the questions.

3. Total No of questions 3

1. The open loop transfer function of a unity feedback control system is given by

G(s) =
$$\frac{K_c}{(s+2)(s+4)(s^2+6s+25)}$$

By applying the Routh criterion, discuss the stability of the closed loop system as function of k_c Determine the value of k_c which will cause sustained oscillation in the closed loop system?

[5M]

2. Draw the root locus (in the graph sheet) of a closed loop system with the following characteristics:

Process:
$$G_p(s) = \frac{K(s+7)}{(s+2)(s+6)}$$
.

Final control element: $G_f(s) = 1$

Give conclusion for the root locus branches.

[M8]

3. Draw the Bode plot (in the graph sheet) for the open loop transfer function with the following dynamic components:

$$G_p(s) = \frac{5}{s (1+0.2s) (1+0.02s)}$$
; $G_f(s) = 1$

and determine (1) gain cross over frequency (2) phase cross over frequency. (Assume Lower frequency = 0.1 rad/ sec; Higher frequency = 100 rad/sec)

[7M]

BITS, PILANI – DUBAI

Dubai International Academic City, Dubai, UAE

Semester II 2013-2014

QUIZ II / (Closed Book)

BE (Hons) IV year EIE / III CHEM

Course No

: INSTR C451 / INSTR F342

Course Title

: PROCESS CONTROL / PROCESS DYNAMICS & CONTROL

Date

: 12.05.14

Time: 20 Minutes

M.M = 10 (10%)

NOTE: 1. All the symbols and words carry their usual meanings, unless otherwise stated.

2. Answer all the questions.

1. Sketch the polar plot for G(s) =
$$\frac{1}{s(1+sT_1)(1+sT_2)}$$

[2M]

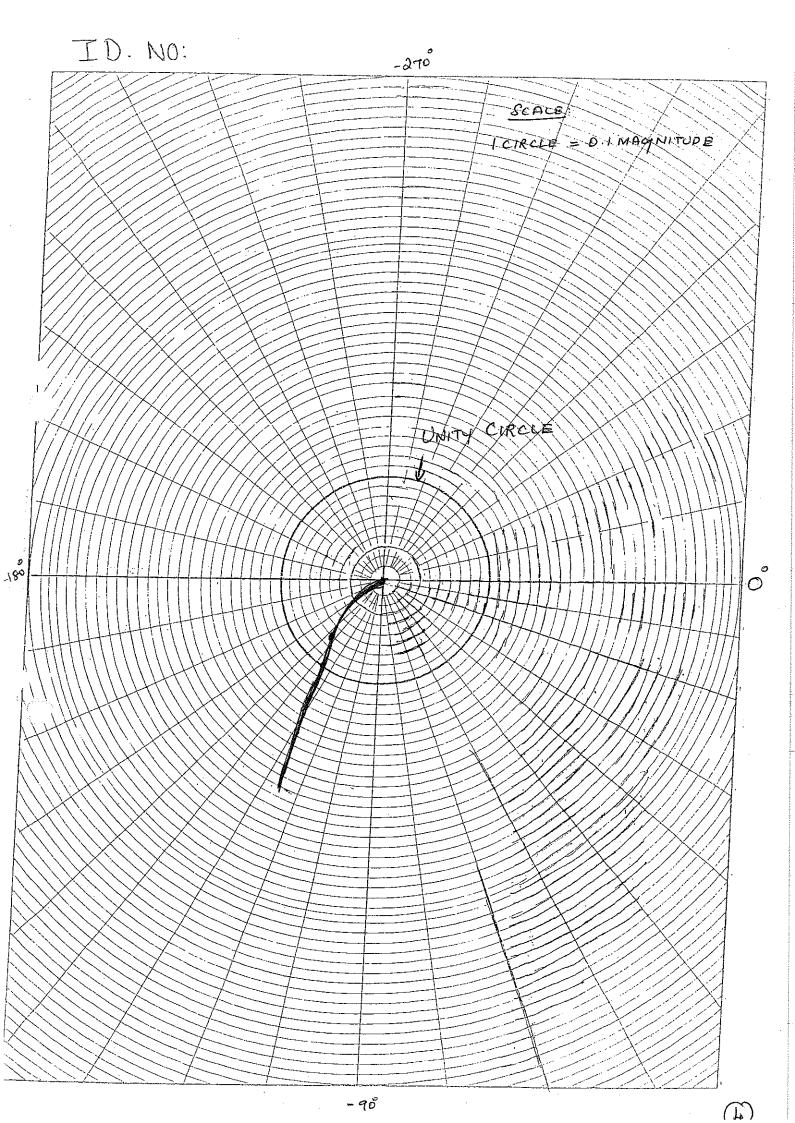
2. Find the phase margin and gain margin for the polar plot shown.

[2M]

3.	What are	the	classifications	of	control	value?
----	----------	-----	-----------------	----	---------	--------

[2M]

4. When the cascade control system will be ineffective?


[1M]

5. Feed forward control system is used for making variations in minor load variables. Say true or False. [1M]

6. Mention any four major differences between FBC and FFC.

[2M]

ALL THE BEST

BITS, PILANI - DUBAI Dubai International Academic City, Dubai, UAE Semester II 2013-2014 TEST I / (Closed Book)

BE (Hons) IV year EIE / III CHEM

Course No

: INSTR C451 / INSTR F342

Course Title

: PROCESS CONTROL / PROCESS DYNAMICS & CONTROL

Date

: 10.03.14

Time: 50 Minutes

M.M = 20 (20%)

NOTE: 1. All the symbols and words carry their usual meanings, unless otherwise stated.

- 2. Answer all the questions.
- 3. Total No of questions 4
- 1. Derive the state equations and find the degree of freedom for the stirred tank heater shown in [5M] figure 1.

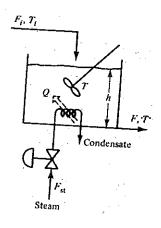


FIGURE 1

2. Find the response of first order system when subjected to a unit impulse input.

[2M]

- 3. Consider the unit step response of a unity feedback control system whose open loop transfer function is $G(s) = \frac{1}{s(s+1)}$. Obtain the rise time, peak time, maximum overshoot and settling time for 2%.
- 4. Consider the heat exchanger shown in figure 2. Identify:

[7M]

- a. The control objective for this system
- b. All the external disturbances that will affect the operation of the exchanger.
- c. All the available manipulated variables for the control of the exchanger in the presence of disturbances.
- d. Construct two different feedback control configurations that will satisfy the control objective in the presence of disturbance.

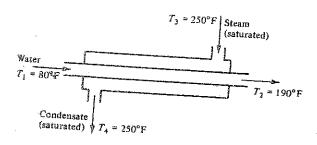


FIGURE 2

ALL THE BEST