BITS, PILANI- DUBAI DUBAI INTERNATIONAL ACADEMIC CITY SECOND SEMESTER 2009-2010 Comprehensive Examination

Course No.: CHEM 441 23.05.10 Maximum Marks: 80 Course Title: Biochemical Engineering Maximum Time: 3 hours

1.a) Plot a graph showing the effect of substrate concentration [S], on the rate of an enzyme catalyzed reaction V. Show the position of K_m on the x axis.

- b) Inhibition effect of a sulfa drug was studied experimentally, on an enzyme. From its Lineweaver-Burk plot, 1/ K_m value for the enzyme without the inhibitor was 0.8 and in presence of inhibitor was 0.38. From this data state the nature of the drug's inhibition giving your reason.
- c) What are the advantages of immobilizing an enzyme? State any one example of commercial value and its mode of immobilization. (5+5+5)
- 2a) State one advantage and one disadvantage of using complex media over synthetic media.
- b) Human insulin could be produced due to recombinant DNA technology. Briefly explain.
- c) Give the flow diagram for a typical continuous plate heat exchange sterilizer. For a sterilization unit, the Del factor for various stages was worked out. It has v.h/v.t = 0.2. if its v.t is 40 and specific death of the organism to be killed (at 121° C) is 3.5 min^{-1} , find the holding time required at the said temperature.

(3+5+7)

- 3. a) Depict the exergonic and endergonic coupled reaction involving ATP.
- b) Baker's yeast is used in baking industry as well as to produce alcohol by controlling its metabolic route. Explain.
 - c) Consider the following simplified biological conversion using an organism.

 $CH_mO_n + aO_2 + b NH_3 \rightarrow c CH_\alpha O_\beta N_\gamma + d H_2O + eCO_2$ (4+5+6M) Give the elemental balances of C, H, O and N through equations

- 4 a) Solubility of O_2 is only 10 ppm at ambient conditions. What design elements you would introduce in a bioreactor to increase dissolved oxygen (DO) and get the desired oxygen-transfer rate during scale up?
- b) A bioreactor having stirred glucose media registers around 65 KJ due to Q_{exch} (heat-transfer rate to exchanger). After inoculation with an organism, the heat registered, increases up to 120KJ. Explain. Do you expect Q_{exch} to vary if the media is changed to methanol? OR

The maximum growth yield coefficient for a bacillus growing in butanol is 0.6g x/g of substrate. The heat of combustion of cells is 22 KJ/g cells and heat of combustion of substrate is 29.3 KJ/g. Determine the metabolic heat generated by the cells per unit mass of butanol consumption. (5+5)

- 5 a) Draw a schematic diagram of a CSTR and give the equation for its mass balance of its biomass *or* substrate.
- b) An organism Z which follows Monad equation, is growing in a chemostat. The system has μ max = 0.7 h^{-1} and Ks of 2.5 g/l. In a perfectly mixed vessel at steady state, if Sf = 60 g/l, what dilution rate D will give maximum total rate of cell production?
- c) Write a note on any major sensor which is associated with monitoring a reaction in a fermenter. (5+6+4)
- 6 a) Describe how Penicillin G is extracted from the filtered broth using countercurrent extraction technique to finally obtain crystalline penicillin salt.
- b) Discuss with a generalized flow chart depicting a bioprocess, the costing involved. (5+5)

BITS, PILANI- DUBAI DUBAI INTERNATIONAL ACADEMIC CITY FIRST SEMESTER 2009-2010 TEST – 2 (OPEN BOOK)

Course No.: CHEM 441

187.04.10

Maximum Marks: 20

Course Title: Biochemical Engineering

Maximum Time: 50 minutes

- 1.a) You are asked to formulate a suitable medium for growing a simple organism like *E. Coli*. What ingredients will you put in?
 - b) Give one advantage of continuous sterilization over batch sterilization.
- c) The overall Del factor for a fermenter is 35. If the specific death rate of a bacillus spore at 121°C is 2.8 min⁻¹, what will be the time required for sterilization? (1.5+1+2.5)
- 2a) For a Chemostat model, how do you arrive at the following equation:

 $D_{max} = \mu_{max} \cdot S_f / Ks + S_f$

Based on this eqn., when will a 'wash out' occur?

- b) In large bioreactors, discuss the role of impellers; take into account their parameters like N, D_i and Q. (3+2)
- 3. a) How will you arrive at an expression for oxygen-transfer rate per unit of reactor volume, QO₂ ? Explain its significance.
- b) Which are the various ways heat is generated in a bioprocess? Show any one model, with the help of a diagram, by with this heat can be removed. (3+2)
- 4 Consider the following equation which describes the growth of an organism

 $C_6H_{12}O_6 + \beta \ NH_3 \rightarrow 0.59 \ CH_{1.74}O_{0.45}N_{0.2} \ (biomass) + 0.43 \ C_3H_8O_3 + 1.54 \ CO_2 + 1.3 \ C_2H_5OH + 0.036 \ H_2O$

- a) Determine the biomass yield coefficient Yx/s
- b) Determine the product yield coefficient YEIOH/s; YCO2/s
- c) Determine B

(5M)

BITS, PILANI- DUBAI DUBAI INTERNATIONAL ACADEMIC CITY SECOND SEMESTER 2009-2010 TEST – I (CLOSED BOOK)

Course No.: CHEM 441

07.03.09

Maximum Marks: 25

Course Title: Biochemical Engineering

Maximum Time: 50 minutes

- 1. a) How does the job profile of a biochemical engineer differ from that of a bio-medical engineer? (3X2 M)
 - b) What technique you will use to isolate various organelles inside the cell?
 - c) What are cell /nuclear membranes made up of? How do they help it in its function?
- 2. From the following kinetic data, determine:

(6+4+4M)

a). K_m & V_{max} for the reaction

[S] (mM)	V _o (umol L ⁻¹ min ⁻¹)
2.0	139
3.0	179
4.0	213
10.0	313
15.0	370

- b) What is the difference between competitive and non-competitive enzyme inhibition? How will their kinetics differ when plotted as Lineweaver Burk Plot?
- c) Mention any two advantages of immobilizing an enzyme?

 What are the various methods available to immobilize an enzyme? State any one example of commercial value.
- 3. You wish to produce a small peptide using *E.coli*. You know the amino acid sequence of the protein. The protein converts a colourless substrate into a green product. You have access to a high-copy number plasmid with a penicillin resistant gene and normal reagents for genetic engineering. Briefly discuss the steps you would do to get an engineered *E.coli* and to get it to produce this protein. (5M)

BITS, PILANI - DUBAI SECOND SEMESTER 2009 - 2010 Fourth Year- Quiz 2

Course Code: CHE C441 Course Title: Biochemical Engineering Duration: 20 minutes Date: 24/03/.10 Max Marks: 14 Weightage: 7%

	Name:		ID No:	Prog: .	
	According to Monad'niting substrate [S]?	s equation, when does t	the saturation consta	nt (Ks) is equal to the con (1M)	centration of the rate-
2) Give the expressio condition.	n for cell mass balance	for an ideal chemost	at which is running in the (steady state (2M)
3)	Sketch any one mod	del of a CSTR in which i	mmobilized enzyme o	catalyzed reaction takes p	lace. (2M)
4)	Which technique is u	ısed to monitor Residen	ce Time Distribution	(RTD) in an reactor.	(1 M)
5)	a) Dissolved oxygen	(DO) probe in a bioread	ctor works on which p	rinciple?	
		e monitoring is done usi isruption techniques use			(1+1M) (2M)

From a crude enzyme mixture, pure enzyme X needs to obtained. This is done using a combination of ion-change and affinity chromatographic runs. Which will be used first and which later; give reasons.	
A scientist has to choose between two centrifuges to separate the cells from the fermentation broth; A has gular velocity of 5000 s ⁻¹ and a radius of 1 m while that for centrifuge B is 4500 s ⁻¹ and 1.5m. Which will do the paration faster? Explain. (2M)	
The equipment Podbielniak extractor is run on	

BITS, PILANI – DUBAI SECOND SEMESTER 2009 – 2010

SECOND SEMESTER 2009 – 2010				
Course Code: CHE C441 Fourth Year	Date: 24/03/.10			
Course Title: Biochemical Engineering	Max Marks: 16			
Duration : 20 minutes	Weightage: 8%			
Name:	Sec / Prog:			
1) In cellular metabolism, give the two half reactions of ATP formation and its us	sage. (2 marks)			
2) Name the common pathway in glucose metabolism. (1M)				
3) Eukaryotes have better energy efficiency in utilizing glucose than the prokar	yotes. Justify. (2M)			
4a) Michaelis-Menton constant Km, equals the substrate concentration [S], whis	nen the rate of the enzyme reaction (1M)			
b) Finish the steady state equation of Michaelis-Menton: d[S]/dt = ???	(1.5M)			
5) a) Give a method of introducing vector-foreign DNA recombinant into the	e host cell. (1M)			
b) Immobilized amylase is used in	industry. (1M)			

(1M)

b) What do you understand by 'batch culture' and 'fed-batch culture'?	(1.5M)
7) a) Most organisms can be killed by moist heat treatment at for .	mins. (1M)
	/1 mm m
b) List the items that need to be sterilized for carrying out fermentation.	(1,5M)
c) Define or give equation for Del factor of sterilization.	(1.5M)

Ė

1