BITS, Pilani-Dubai Dubai International Academic City

BE (Hons.) EEE, IV Year, Second Semester, 2008-09 Comprehensive Examination

Course Title: Digital Communication (Elective) Course No.: EEE C416

Maximum Marks: 80 Weightage: 40 % Duration: 3 Hours

Note: Answer all questions. Appropriate assumptions may be made where necessary.

- 1. With the aid of block diagrams explain how a digital communication system differs from an analog communication system. (5 marks)
- 2. Explain the Gaussian density function and why it occurs so frequently in the real world. What do you understand by the term Q-function? (4 + 2 = 6 marks)
- 3. A received signal is made up of two components: signal and noise. That is, r(t) = s(t) + n(t). The signal may be considered as a sample of a random process with autocorrelation $R_s(\tau) = 2e^{-|\tau|}$. The noise is a sample of a random process with autocorrelation $R_n(\tau) = e^{-2|\tau|}$. Both processes have zero mean value, and they are independent of each other. Find the autocorrelation and total power of r(t). (5 + 3 = 8 marks)
- 4. Establish the equivalence of a matched filter output and a correlator output when sampled at t = T, where T is the symbol interval. (5 marks)
- 5. A (7, 4) systematic cyclic code is specified by the generating polynomial $g(X) = 1 + X + X^3$. Find the code word corresponding to u = 1011. (6 marks)
- 6. Explain briefly the Viterbi decoding algorithm taking an appropriate (2, 1, 3) convolutional encoder of your choice. (10 marks)
- 7. Explain briefly the phenomenon of inter symbol interference and how it is minimized. For a telephone line with bandwidth 3.5 kHz, find the data rate in bits per second (b/s) that can be transmitted if we use binary signaling with raised-cosine pulses and a roll-off factor $\alpha = 0.5$. (5 + 4 = 10 marks)
- 8. Give the principle and working of an early-late gate synchronizer with the aid of illustrations. (8 marks)
- 9. What is Continuous Phase FSK and why is it preferred to conventional FSK? Write a brief note on Minimum Shift Keying. (3 + 4 = 7 marks)
- 10. What is CDMA? With appropriate mathematical analysis, show how CDMA allows asynchronous transmission and reception of N DSSS signals over the same frequency band without any noticeable interference or cross talk among receivers. (2 + 8 = 10 marks)
- 11. With the aid of a block diagram, explain the working principle of the RAKE receiver. (5 marks)

BITS, Pilani-Dubai

Dubai International Academic City, UAE B.E. (Hons.) EEE, IV Year, II Semester, 2008-2009

Test #2 (Open Book)

Course No. / Course Name: **EEE C416 / Digital Communication (Elective)**Date: 12/04/2009 Duration: 50 min Weightage: 20% Max. Marks: 40

Note: Answer all questions. Appropriate assumptions may be made, where necessary. O-function table is given on the reverse page.

1. Three messages are to be transmitted over a AWGN channel with zero mean and two-sided noise power spectral density $\eta/2$. The messages are transmitted as waveforms $s_1(t)$, $s_2(t)$, and $s_3(t)$ as described below:

$$s_1(t) = \begin{cases} 1, & 0 \le t \le 1 \\ 0, & otherwise \end{cases};$$

$$s_2(t) = \begin{cases} \cos(2\pi t), & 0 \le t \le 1 \\ 0, & otherwise \end{cases};$$

$$s_3(t) = \begin{cases} \cos^2(\pi t), & 0 \le t \le 1 \\ 0, & otherwise \end{cases};$$

Using the Gram-Schmidt orthogonalization procedure, find an appropriate basis for the signal space. What is the dimensionality of the signal space (justify!)? Draw the signal constellation. (6+2+4)

2. Binary information is transmitted using basebend signals of the form shown in Fig. 1 below. Design a *simplified* matched filter detector, and find the probability of bit error, assuming that the additive noise in the channel has a two-sided power spectral density of 0.5×10^{-3} Watt/Hz. (8+4)

Fig. 1: Baseband waveforms for Q 2.

- 3. Sketch the state diagram and the trellis diagram for the convolutional encoder shown in Fig. 2. (5+5)
- Calculate the capacity of an AWGN channel with a bandwidth of 1 MHz and an S/N ratio of 30 dB. (6)

Fig. 2: Encoder for Q. 3

BITS, Pilani-Dubai Dubai International Academic City BE (Hons.) EEE, IV year, II Semester, 2008-2009 Test # 1

Course No./Course Title: EEE C416 / Digital Communication (Elective)
Duration: 50 minutes Weightage: 25% Max. Marks: 50

Answer all questions. Appropriate assumptions may be made, where necessary.

- 1. A random variable X takes the values 0 and 1 with probabilities α and $\beta = 1 \alpha$, respectively. Find the mean and variance of X. (3 + 3 = 6 marks)
- 2. The noise level produced by a noisy resistor at a certain time instant is known to be a Gaussian random variable, say X, with zero mean and variance σ^2 . Compute the probability that $|X| > k\sigma$ for k = 1, 2, 3. A table of the Q function is given on the next page. (8 marks)
- 3. A WSS random process X(t) with power spectral density $G_x(\omega)$ is applied at the input to the filter shown below. Show that the power spectral density of the output process is $G_x(\omega) = 2(1 \cos \omega T)G_x(\omega)$. (10 marks)

- 4. Consider a binary channel with channel capacity 36 kb/s that is available for PCM transmission of voice signals. Find appropriate values of the: (a) sampling rate f_s, (b) number of quantizing levels L, and (c) number of binary digits per sample n, assuming that the message signal is bandlimited to 3.2 kHz. (3 + 4 + 3 = 10 marks)
- 5. Write short notes on the following: (a) Equivalence of matched filter and correlator, (b) Average information content in the English language, (c) Ergodic process, and (d) Channel capacity of an AWGN channel. (4 + 4 + 4 + 4 = 16 marks)

BITS, Pilani-Dubai Dubai International Academic City

EEE C416 Digital Communication Surprise Quiz #3

 Du	ration: 20 mm	Max. Marks . 10	weightage. 570	·
Name:				
ranic.				_
	ID No:			

- 1. In a four-stage shift register used to generate a PN sequence, feedback taps [4, 1] are connected through a modulo-2 adder and the initial state of the register is 1000. Determine the output sequence of the shift register. (6 marks)
- 2. What are the requirements to be satisfied for a system to be described as a spread spectrum system? (4 marks)

BITS, Pilani-Dubai

Dubai International Academic City

B.E. (Hons.), EEE IV Year, II Semester, 2008-2009

Course No. / Course Name: EEE C416 / Digital Communication

Marks: 10

Weightage: 5%

SURPRISE QUIZ #2

Name:

ID No.:

Duration: 20 min

1. A matched filter has the frequency response $H(f) = \frac{1 - e^{-j2\pi fT}}{j2\pi f}$. Determine the impulse response h(t). Also determine and plot the signal waveform to which the filter characteristic is matched. (3+3 = 6 marks)

2. Show that if c_i and c_j are two code vectors in an (n, k) linear block code, then their sum is also a code vector. (4 marks)

SOLUTIONS

1. Given $H(f) = \frac{1 - e^{-\int_{2}^{2} \pi f}}{j2\pi f}$

Luverse transform yields

h(t) = Sgn(t) - = 2rect

BITS, Pilani-Dubai Dubai International Academic City BE (Hons.) EEE, IV year, II Semester, 2008-2009

Surprise Quiz # 1

Course No./Course Title: **EEE C416 / Digital Communication (Elective)**Duration: 15 minutes Weightage: 5% Max. Marks: 10

Name:	
ID No.:	

A communication system consists of three possible messages A, B, and C. The probability of message A is p, and the probability of message B is also p. Find and plot the entropy as a function of p. What are your inferences from the plot?