BITS, PILANL-DUBAI CAMPUS, KNOWLEDGEWILLAGE, DUBAI IV YEAR, SECOND SEMESTER 2004-2005

INSTR UC451- PROCESS CONTROL TEST – 2(OPEN BOOK)

Maximum Marks: 20

Date: 24.04.2005

Time

: 50 minutes

Weightage: 20 %

Answer ALL Questions.

1. Find the gain of the proportional controller that produces a closed loop response for the second order system with decay ratio equal to 1/4. The process is described by

$$G_p(s) = 1 / (s^2 + 3s + 1)$$
 and $G_m = G_f = 1$ [4]

2. Examine the effect that various values of the gain K_m of a measuring device will have on the closed loop response of the following transfer function.

$$G_p(s) = 1 / (s+1) (2s+1)$$
 Assume that $G_m = K_m$, $G_f = 1$ and the controller is proportional with $K_c = 1$. Also comment the effect of K_m on offset [4]

3. The open loop transfer function of a unity feedback control system is given by

$$G(s) = K / (s+2) (s+4)(s^2+6s+25)$$

By applying the routh criterion determine

(a) The range of K for which the closed loop system will be stable

(b) The value of K for which the closed loop system will oscillate

[4]

[4]

4. The Nyquist plot of G(s) = k(1+0.5s)(1+s)/(1+10s)(s-1) is shown in figure -1. If the value of K is 8, Comment on the stability of open loop and closed loop system.

Figure -1

Transfer function of two different systems $G_1(s)$ and $G_2(s)$ are given below . Identify which system has inverse response and why . Where

$$G_1(s) = \{10/(0.1s+1)\} - \{5/(0.04s+1)\}, G_2(s) = \{10/(0.2s+1)\} - \{5/(0.3s+1)\}$$

BITS, PILANI - DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI IV YEAR, FIRST SEMESTER 2004-2005

INSTR UC451- PROCESS CONTROL - 1(CLOSED BOOK)

QUIZ

Maximum Marks

: 30

Date: 03.04.2005

Time

: 30 minutes

Weightage: 10 %

Name

. :

Id.No.:

Answer ALL Questions.

- 1. Non interacting capacities always results in an ------ damped system or an ----- damped system and never in an ----- damped system
- 2. In connection to the response of the second order system for a step change in input shown in figure -1, The ratio of A/B is called -----and the ratio of C/A is called -----

Figure - 1

3 For the system shown in figure - 2, the transfer function between the external output h(s) and the input F_i (s) is of ------ order

Figure - 2

Figure - 3

5. For the second order system given below, if we introduce a unit step change in the input, the response will have a percentage overshoot of -----

$$G(s) = 1/(s^2 + s + 1)$$
.

6. The response of 4 different processes for a step input change is shown in figure – 4.

Match the response with the process

Response ----is for two interacting tank process

Response ----is for two non interacting tank process

Response ----is for four interacting tank process

Response ----is for first order process

Figure - 4.

7. The response of ----- controller is shown in figure - 5. The equation of the given controller output c(t) is -----

Figure - 5.

8. If a closed loop system has first order process with $K_p = 5 \& \tau_p = 2$, $G_m = G_f = 1$, $G_d(s) = 5 / (2S + 1)$ and $G_c = 2$ and a change in the load is a unit step change, then is the offset in the response

11. The closed loop system has a process transfer function $G_p(s) = 2/(4s+1)$ and derivative controller gain = 5, $G_m = G_f=1$, The overall time constant of the System is -----

13. (a) The closed loop system has a process shown in figure – 6, and $G_m = G_f = 1$, and $G_c = 0.5$ The closed loop transfer function has

 G_{sp} (s) ---- and G_{load} (s) ----

Figure - 6

(b) For the closed system shown in figure - 7, the closed loop transfer function has

Gload (S) -----

Figure - 7

- 14. For the constant nonzero error ------ controller gives no control action
- 15. Fill in the blanks in connection to P+I controller effect on closed loop response.

 15 If the integral time decreases for constant K_c, the response become -----and becomes ------oscillatory.

BITS, PILANI - DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI IV YEAR, SECOND SEMESTER 2004-2005

INSTR UC451- PROCESS CONTROL TEST – 1(CLOSED BOOK)

Maximum Marks: 20

Date: 13.03.2005

Time

:50 minutes

Weightage: 20 %

Answer ALL Questions. ($5 \times 4 = 20$)

1. Develop the mathematical model for the two CSTRs system shown in figure -1. A simple reaction A → B with first order kinetics takes place. Assume isothermal conditions. Flow rates F1 and F2 are determined by variable speed pumps and they are independent of the corresponding liquid levels.

Figure-1.

- 2. For the simple chemical plant shown in figure -2
 - (a) List out the operational objectives
 - (b) List out the disturbances that will affect the operational objectives

Figure -2.

BITS, PILANI - DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI IV YEAR, SECOND SEMESTER 2004-2005 INSTR UC451- PROCESS CONTROL COMPREHENSIVE EXAMINATION-MAKE UP (Closed Book)

Maximum Marks: 80

Time

: 3 HOURS

Weightage: 40 %

NOTE:

1. ANSWER ALL QUESTIONS FROM PART A AND ANY SIX QUESTIONS FROM PART - B

2. ALL THE SYMBOLS CARRY THEIR USUAL MEANING UNLESS OTHERWISE INDICATED

3. ANY MISSING DATA CAN BE ASSUMED, BUT NEED TO BE MENTIONED

PART - A

 $(2 \times 10 = 20)$

- 1. What is an input output model and how can you develop it from the state model? When is this possible?
- 2. Compare feedback and feed forward controllers
- 3. List out the effect of PI control on the response of closed loop system
- 4. What is meant by STR . explain with block diagram
- 5. With an example explain the principle of operation of ratio controller
- 6. Draw the bode plot of PD and PI controller
- 7. Larger the gain margin implies smaller or larger allowable gain? justify your answer
- 8. Describe in physical terms the concepts of dead time compensation. Why is such a system also called a predictor?
- 9. Process transfer functions are given below. Find the transfer function of main feed forward controller and comment on it

$$G_p(s) = 10 e^{-0.5s} / (2s+1)$$
, $G_d(s) = 2 e^{-0.2s} / (2s+1)$

10. List out the time integral criteria and explain the need of it

PART - B

 $(6 \times 10 = 60)$

11. Construct the Nyquist plot for a system whose open loop transfer function is given by

$$G(s)H(s) = K/s(s+2)(s+10)$$