BITS, Pilani – Dubai Campus, Knowledge Village, Dubai.

IV Year Second Semester 2004-2005

Degree: B.E. (Hons.) Branch: C.S.

Comprehensive Examination Question Paper

Course No: EA UC473 Course Title: Multimedia Computing
Date: 02, June., 2005 Thursday

Weightson: 40% P.

Weightson: 40% P.

Weightage: 40% Data provided are complete. Closed Book.

Part A

Answer all Questions.

10 * 2 = 20 Marks

- 1. What is Representation Medium? Give an example.
- 2. A photograph of (6 X 8 inches) is scanning in 300 dpi resolution and 8 bit colour. The image is then saved in a JPEG file with 1:20 compression ratio. It is then used on a web page. If a viewer connecting to internet uses a modem of transfer rate 52 Kilobits / sec., how long will it take to download the compressed image to his/her computer?
- 3. Given the bandwidth of a speech signal is from 50 Hz through to 10 KHz, derive the BIT RATE [in Kbps] that is generated by the digitization procedure assuming the Nyquist sampling rate is used with 16 bits per sample for the speech signal.
- 4. Mention the names of Research Areas in SPEECH ANALYSIS.
- 5. What is FLICKER EFFECT? How can you reduce it?
- 6. Distinguish between Constant Linear Velocity (CLV) and Constant Angular velocity w.r.t. CD-ROM.
- 7. Give an example each for a) Hypertext System b) Hypermedia System.
- 8.In Multimedia User Interface Design, what aspects/factors does AESTHETICS consider?
- 9. In Windows Multimedia Extensions (WME), what is the function of multimedia file I/O service?
- 10. Give an example each for an IMAGE QUERY and AUDIO QUERY in a sample multimedia scenario.

Part B. Answer all questions.

4 * 5= 20 marks

11. Explain in brief the CLASS HIERARCHY of MHEG objects, with a diagram.

[5 M]

12 Explain in brief, CD-ROM Extended Architecture's FORM 1 and FORM 2 Block Layouts (in mode 2) with diagrams. [5 M]

PTO

13. Explain the LEVEL of DETECTION of Synchronization Errors and LEVEL of ANNOYANCE of audio/visual skew in LIP SYNCHRONIZATION. [5 M]

14. Explain the following steps w.r.t. IMAGE RECOGNITION with diagrams:

a) Labelling

2.5 M

b) Grouping

2.5 M

Part C. Answer all questions.

2 * 10= 20 marks

15.Explain the following w.r.t. multimedia applications: 5+5 M

a) Elements of Computer Supported Cooperative Work (CSCW).

b)Features of an IMAGE EDITOR with a diagram.

16. Consider the transmission of a message comprising a string of characters. The probabilities of each character is given below:

p(A)=0.30 p(M) = 0.20 p(N) = 0.25 p(I) = 0.25

Using ARITHMETIC CODING,

a) Encode the string MAIN

b) Decode 0.6534 [assume 4 letter word]

[10 M]

BITS, Pilani – Dubai Campus, Knowledge Village, Dubai. IV Year Second Semester 2004-2005

Degree: B.E. (Hons.) Branch: C.S.

Comprehensive Examination Marking / Answering Scheme Course No: EA UC473 Course Title: Multimedia Computing

Date: 02, June., 2005. Thursday

Time: 10 a.m.- 1 Noon

Total marks: 60

Weightage: 40% Data provided are complete. Closed Book.

Part A

Answer all Questions.

10 * 2 = 20 Marks

1. Representation Medium: internal computer rep. Of information. ASCII, JPEG,PCM.

2.6 * 300 * 8 * 300 * 8

20 * 52 * 1024 :

32.45 sec. [1+1 for the steps and final answer]

3.20K * 16 = 320 kbps.

4. Verification, Identification, Recognition, Understanding.

5. Periodic fluctuation of brightness perception, through a slow motion. Display Refresh buffer eliminates / reduces flicker effect. [1+1]

- 6. difference w.r.t. rotational speed, data transfer rate to be specified.
- 7. Appropriate example in Hypertext/Hypermedia System 1+1 mark.
- 8. colour combination, character sets, resolution, form of the window.
- 9. buffered/unbuffered file I/O. supports RIFF files. 1+1

10. Appropriate Image, Audio query 1+1

Part B. Answer all questions.

4 * 5= 20 marks

11.Explain in brief the CLASS HIERARCHY of MHEG objects, with a diagram. Diagram and description [3+2 M]

12. Explain in brief, CD-ROM Extended Architecture's FORM 1 and FORM 2 Block Layouts (in mode 2) with diagrams. [5 M]

Diagram + description (1.5+1) + (1.5+1)

13. Explain the LEVEL of DETECTION of Synchronization Errors and LEVEL of ANNOYANCE of audio/visual skew in LIP SYNCHRONIZATION. [5 M]

Level of Detection: Diagram + desc 1+1.5

Level of Annoyance: Diagram+desc 1+1.5

14. Explain the following steps w.r.t. IMAGE RECOGNITION with diagrams:

c) Labelling Diagram+desc 1.5+1 = 2.5 M

d) Grouping Diagram+desc 1.5+1 = 2.5 M

course file

Part C. Answer all questions.

2 * 10= 20 marks

15 Explain the following w.r.t. multimedia applications:

a) Elements of Computer Supported Cooperative Work (CSCW). 5M

b)Features of an IMAGE EDITOR with a diagram. 2.5+2.5 M

16. Consider the transmission of a message comprising a string of characters. The probabilities of each character is given below:

p(A)=0.30 p(M)=0.20 p(N)=0.25 p(I)=0.25 Using ARITHMETIC CODING,

c) Encode the string MAIN STEPS: 1+1+1+1+1

d) Decode 0.6534 [assume 4 letter word] Steps: 1+1+1+1+1

BITS, Pilani – Dubai Campus, Knowledge Village, Dubai. IV Year SECOND Semester 2004-2005

Degree: B.E. (Hons.) Branch: C.S.

TEST II Question Paper

Course No: EA UC473 Course Title: Multimedia Computing
Date: 01, May, 2005 Sunday Time: 9.30.- 10.20 am. Total marks: 20
Data provided are complete. OPEN Book. There are 2 pages in this qn paper.

1. Find SSD [sum of squared differences] correlation and SAD [sum of absolute differences] correlation for the following data pertaining to MPEG P-Frames:

MATCH WINDOW [macroblock] SEARCH WINDOW								
6	8	10		6	10	9		
4:	5	7		2	6	8		
10	7	3	j	9	8	2		
			•				[3M]	

2. The following problem relates to the dimensions of a compressed image using JPEG format:

You are given the following data: $X_{max} = 512$ pixels; i.e. the maximum of all X_{i} .

Y_max= 256 pixels; i.e. the maximum of all Y_i.

H_max=4 i.e. Maximum Horizontal sampling ratio.

V_max=4 i.e. Maximum Verical sampling ratio.

Now calculate (X_i,Y_i) for each of the following pairs of (H_i, V_i):

	(<u>-</u> -, - <u>-</u> -) 101 00	on or the following pan	.5 O1 (11_1, V_1).	
LH_i	V_i	X i	Y i	
2	1			
4	1			
2	4			
1	2			

Here, (H_i, V_i) refer to relative horizontal and vertical sampling ratio for each component. [2 marks]

- 3. It has been planned to design a multimedia user interface for the following application:
- "An Internet Based LEARNING SYSTEM for the course EAUC473 MULTIMEDIA COMPUTING".

For the above application, explain the design criteria for designing an user friendly interface. [5 marks]

- 4 Where are the following Optical Storage Media Formats used?
 - a) CD-ROM MODE 1

- b) CD-ROM MODE 2
- c) CD-ROM/XA FORM 1 d) CD-ROM/XA FORM 2

[2 marks]

course itile

BITS, Pilani – Dubai Campus, Knowledge Village, Dubai.

IV Year First Semester

2004-2005

Degree: B.E. (Hons.) Branch: C.S.

TEST II Marking / Answering Scheme

Course No: EA UC473 Course Title: Multimedia Computing

Date: 01, May, 2005 Sunday

Time: 9.30.- 10.20 am.

Total marks: 20

Data provided are complete. OPEN Book.

1. SSD, SAD correct steps of calculations:

2 + 1 M

٠ ـــ		
X_i	Y_I	
256	64	
512	64	
256	256	
128	128	

8*0.25=2 marks.

- 3. 10 criteria w.r.t application 10*0.5=5 marks
- 4. Optical Storage Media: typical applications and usage 4*0.5=2 marks.
- 5. Correct Application 2 marks Explanation w.r.t. application 2 marks.
- 6. a) Encode the quantized sequence using DPCM.

2.5 marks.

22, 2, 0, 4, 0, 0, -3, 1, 0, 0, -5, -2, 1, 0, 2, 2, 0, 0, -1, 1, -4, -4, -6, 0, -2, 3, -5, 3, 0, 3, 3, 4

b) How many bits do you need to encode the difference? 1 mark.

The numbers in this set range from -6 to 22 which means that 5 bits per number is needed for encoding.

c) How many bits do you need to transmit the entire sequence ? 0.5 mark.

5*32 = 160

course file

BITS, Pilani - Dubai Campus, Knowledge Village, Dubai.

IV Year Second Semester 2004-2005

Degree: B.E. (Hons.) Branch: C.S.

TEST I Marking / Answering Scheme

Course No: EA UC473 Course Title: Multimedia Computing

Date: 20/3/05 Sunday

Time: 9.30-10.20am Total marks: 20

Data provided are complete. Closed Book.

1. Explain GRANULARITY of an uncompressed VIDEO SEQUENCE (motion picture) with a diagram.

Diagram: 1 mark. Description about film, clip, frame, block, pixel 2marks.

- 2. Explain the following modes w.r.t. MIDI (music instrument digital interface): a)MODE 1: OMNI ON / POLY midi device monitors all midi channels and responds to channel messages, device can play several notes at a time.
- b)MODE 2: OMNI OFF / MONO midi device responds only to channel messages sent on the channel(s) the device is set to receive. Device plays 1 note at a time.

- 3. Explain the Image Technique: DITHERING, with suitable diagrams for 2 x 2 dither patterns. [2.5+2.5m]
- Find the AUDIO DATA RATE in KB/sec. for CD-DA for the

following input data:

- 16 BIT Linear Quantization
- 2 channels

44100 samples / second for each channel.

What will be the TIME required to transmit a 2 minutes portion of the above audio data using a Transmission Channel of bit rate 2 Mbps?

176.4 KB/sec or 172.3 KB / sec with steps

53.83 sec. with steps

0.5 + 0.5

- 5. Mention the names of the techniques for Controlling Animation. [4*0.5m] any 4: full explicit control, procedural control, constraint-based systems, tracking live action, kinematics/dynamics.
- 6. Arithmetic Coding: Initial Step, successive steps, correctly encoded value: 1+3+1 M

7. Huffman Coding: C K C V [0.25*4=1m]

Course file

BITS, Pilani – Dubai Campus, Knowledge Village, Dubai.

IV Year Second Semester

2004-2005

Degree: B.E. (Hons.) Branch: C.S.

TEST I Question Paper

Course No: EA UC473 Course Title: Multimedia Computing

Date: 20, Mar., 2005 Sunday Time: 9.30 am.- 10.20 am Total marks: 20

Data provided are complete. Closed Book.

1. Explain GRANULARITY of an uncompressed VIDEO SEQUENCE (motion picture) with a diagram.

2. Explain the following modes w.r.t. MIDI (music instrument digital interface):

a) MODE 1: OMNI ON / POLY

b) MODE 2: OMNI OFF / MONO

- 3. Explain the Image Technique: DITHERING, with suitable diagrams for 2 x 2 dither [2.5+2.5]
- a) Find the AUDIO DATA RATE in KB/sec. for CD-DA for the following input data:
 - 16 BIT Linear Quantization
 - 2 channels
 - 44100 samples / second for each channel.
 - b) What will be the TIME required to transmit a 3 minutes portion of the above audio data using a Transmission Channel of bit rate 2 Mbps?
- 5. Mention the names of the techniques for Controlling Animation. [2 marks]
- 6. Consider the transmission of a message comprising a string of characters. The probabilities of each character is given below:

p(M)=0.40

p(A) = 0.20

p(N) = 0.25

p(I) = 0.15

Using ARITHMETIC CODING, Encode the string: MAIN

[5 marks]

7. The following Questions (15 to 20) refer to Huffman Coding using the data given in the table shown below:

the table shown below.					
Letter	Frequency	CODE	Bits		
С	32	1110	4		
D	42	101	3		
E	120	0	1		
F	24	11111	5		
K	7	111101	6		
L	42	110	3		
V	37	100	3		
Z	2	111100	6		

DECODE the following bit string and get the corresponding input word. [1 mark]

1110111101110100