BITS PILANI DUBAI CAMPUS FIRST SEMESTER 2012-13

COMPREHENSIV EXAMINATION (CLOSED BOOK)

Course No: EA C416

Duration: 3HRS

Weightage: 40%

Course Name: Introduction to Nanoscience

Max Marks:40

Date: 29.12.2012

Note: All the questions are compulsory.

Given: mass of electron= 9.1×10^{-31} Kg, Planck's constant h = 6.62×10^{-34} J.s, Boltzman constant k= 1.38×10^{-23} J/K

- Q1. (A) Prove that the group velocity at the zone boundary of the optic branch as well as acoustic branch of lattice vibration of a diatomic linear chain is zero. (2)
- (B) What is the Fermi energy for the free electron gas in silver, if the density of conduction electrons is 5.8×10^{28} m⁻³. What is the Fermi Speed? (2)
- Q2. Consider a particle of mass m and kinetic energy E incident on a potential step represented by

$$V(x) = 0, \quad x < 0$$

= $V_0, \quad x > 0$

Starting from Schrodinger equation, derive the expression for reflection and transmission coefficient for (i) $E < V_0$ (ii) $E > V_0$ (4+4=8)

- Q3.(A)) In electron microscopy for characterization of nanomaterial , mention all the possible processes involved when an electron interacts with material. (2)
- (B)Describe in detail the operation of molecular beam epitaxy method for fabrication of nanostructure. (2)
- Q4 Describe in detail the operation of scanning tunneling microscope, used for the characterization of nanomaterial (4)
- Q5. (A) Given chiral vector $\overrightarrow{C} = n\overrightarrow{a}_1 + m\overrightarrow{a}_2$, (where n and m are integers) and Θ is the chiral angle. What is the relationship between(n,m) and Θ . What are the values of Θ for zigzag and armchair carbon nanotubes? (2)

- (B) For the following combination of (n,m), predict the type of CNT (e.g. chiral, zigzag or armchair): (A) (3,3) (B) (15,0) (C) (15,12) (D) (12,9) (2)
- (C) For the following combination of (n,m), predict the nature of CNT (e.g. conducting or semiconducting) (A) (5,0) (B) (6,0) (C) (6,1) (D) (6,3) (2)
- (D) Mention different methods for fabrication of carbon nano tubes and discuss one of the fabrication methods in detail. (4)
- Q6. Describe in detail the principle of operation and typical applications of
- (a) Piezoresistive pressure sensor (b) Conductometric gas sensor (2+2=4)
- Q7.(a) Define quantum well, quantum wire and quantum dot(with diagrams)
- (b) Mention the differences between Type-1 and Type-2 superconducting nanomaterial.
- (c) Describe in detail any method of preparation of Quantum dot structure (2+2+2)

BITS PILANI DUBAI CAMPUS FIRSTSEMESTER 2012-13

Test-1(Closed Book)

Course No: EA C416	Duration: 50 N	<i>l</i> lints W	/eightage: 20%
Course Name: Introduc	ction to Nanoscience	Max Marks:20	Date: 27.9.2012
Note: All the questions a	re compulsory. Given,	mass of the electron=	9.1x10 ⁻³¹ Kg,
Planck's constant h=6.6	2x10 ⁻³⁴ J.s, Boltzmann co	nstant k=1.38x10 ⁻²³ .	J/K
Q 1. (A) Give the definition	on of primitive and non pr	imitive lattices with ex	kamples (2)
(B) Find the Miller indice axes of an orthorhombic			2:3:4 on the coordinate (2)
(C) A nanomaterial wit Calculate the lattice cons			
Q.2. Consider a set of cruse x-rays of wavelengt planes.	T		-
Q3. How to construct a ruce of size a,b and c.	eciprocal lattice. Calcula	te the reciprocal of	a reciprocal vector for a (2)
Q 4.(A)Derive the dispersi nanocrystal.	on relation for vibrations	of one dimensional n	nonoatomic chain in a (4)
(B) Derive the expression	for group velocity in the	above .	(2)
Q5(A) Give the definition of monoatomic and diate	, ,	Vhat are the ranges o	(2)
(B).In the case of vibration 5000 m/s. Calculate the gr			•
			•
÷			
	Good luck		·

BITS PILANI DUBAI CAMPUS FIRST SEMESTER 2012-13

Quiz (Closed Book)

Course No: EA C416 Duration: 30 N		lints Weightage: 5%				
Course Name: Introduction t	o Nanoscience	Max Marks:5	Date: 22.10.2012			
Note: All the questions are con	mpulsory. Given,	mass of the electron	on= 9.1x10 ⁻³¹ Kg,			
Planck's constant h=6.62x10 ⁻⁶	³⁴ J.s,					
Q1. If the Fermi energy of the	electron is 2.1 eV,	find the				
(a) Fermi velocity						
(b) Fermi temperature in Kelvir	1 !		(0.5+0.5=1)			
Q2. What is the Fermi energy (in eV) of for the free electron gas in silver , if the density of conduction electron is 5.8×10^{28} m ⁻³ . (1)						
Q3.(a) Write time dependent a mechanical particle in one dime		ent Schrödinger ed	quation for a quantum			
(b) Write the expression for						
(i) momentum and energy oper	rator (ii) average v	alue of position, m	omentum and energy			

(c) What you mean by normalized wave function. Write the condition of normalization for a

---- Good Luck-----

wavefunction.

(1+1+1=3)