BITS, PILANI – DUBAI CAMPUS

Knowledge Village, Dubai Year III - Semester II 2003 - 2004 Comprehensive Exam (Closed Book)

	Course No.: E 09 - 06 - 04	EE UC 461 / INST		ourse: Power Electronics Weightage = 40 %	
(An	swer all questions fi	rom Part A , any	five from Part B 2	and any five from Part C)	
		Part A : Each	question carries on	e mark	
A1. 2	A Schottky diode is u	ised for			
	a) high voltage rec	tification	b) low reverse cur	rent	
c) low current application			d) high frequency low voltage application		
A2. A	A MOSFET has		- 1	orage application	
	a) high switching	speed, low drive	power and low on s	tate dron	
	b) high switching speed, low drive power and high on state dropc) low switching speed, low drive power and low on state drop				
	d) low switching speed, high drive power and high on state drop				
A3. D	raw the two transisto	or model represen	tation of a thyristor	with terminal markings.	
A4. W	hat is a controlled re	ectifier?	,	with tolimial markings.	
A5. W	hat is a cycloconvert	ter drive?			
A6. W	hat do you mean by	servo drives?			
	hat is a dc chopper?				
A8. Th	e regulation of the o	utput in switched	mode regulators are	normally achieved by	
A9. A	series resonant conve	erter behaves like	a	and at resonant frequency,	
the	converter gain is			and at resonant nequency,	
A10. H	armonic elimination	in the PWM inve	erters can be done by	/ and	
	Pa	rt B : All Questi	ions carry 2 marks	each	
B1. Bri	efly explain the perfo	rmance characte	ristics of IGBTs		
B2. What is a c uk converter? What are its advantages and disadvantages?					
ВЗ. Ехр	B3. Explain the basic principle of Sine-PWM inverter using bipolar switching.				
B4. Exp	B4. Explain the methods used for the controlled rectification in a single phase full bridge AC to DC converter with constant output current.				
	lain the performance				

B6. With the help of an appropriate block diagram, explain the operation of an

uninterruptible power supply system.

Part C: All questions carry 8 marks each

C1. A line commutated thyristor shown in the figure below is triggered at an angle α of 30° with respect to zero crossing.

Sketch the output current, voltage and thyristor voltage waveforms. Also calculate the average output voltage and average output current.

- C2. In a step up / boost converter, the duty ratio is adjusted to regulate the output voltage V_o at 48V. The input voltage varies in a wide range from 12V to 36V. The maximum power output is 120W. For stability reasons, it is required that the converter always operate in a discontinuous conduction mode. The switching frequency is 50 kHz. Assuming ideal components and C as very large, calculate the maximum value of L that can be used.
- C3. Draw the circuit and explain the mode operation of a single phase full bridge voltage source Inverter Also derive its performance characteristics (T_{vv}, T_{ii})
- C4. A three phase fully controlled bridge converter is fed by a supply voltage of 230V, 50 Hz. Assuming continuous load current and a thyristor voltage drop of 1V determine the average load voltage at firing angles of 30° and 45°. Plot the waveform of the thyristor voltages at a firing angle of 60°.
- C5. What is a resonant converter? Draw and explain the different modes of operation of a series resonant DC-DC converter with voltage sink in the discontinuous conduction mode.
- C6. a) Explain the general requirements of a power supply. With a block diagram, explain the operation of a DC power supply system.
 - b) Explain the adjustable speed control of Induction motor drives. Why do you need soft start in Induction motor drives?

BITS, PILANI – DUBAI CAMPUS

Knowledge Village, Dubai Year II - Semester II 2003 - 2004 Test II (Closed Book)

Course No.:

EEE UC 461 / INSTR UC 461

Course: Power Electronics

23 - 05 - 04

Time: 50 Minutes

M.M. = 20

Weightage = 15 %

(Each question carries 5 Marks)

- 1. Show that the state plane trajectory of the steady state response of a series resonant tank circuit under voltage excitation is a circle with center as (-1, 0)
- 2. Explain the continuous conduction mode of operation of parallel resonant converters with neat circuit diagrams and their equivalent simplified circuit models. Explain the waveform also for a single switching period.
- 3. Explain the different modes of operation of an Induction motor speed control drive system. With the help of a block diagram, explain the control algorithm used in servo drives using Induction motors.
- 4. Explain the switching characteristics of a power diode

BITS, PILANI – DUBAI CAMPUS

Knowledge Village, Dubai Year II - Semester II 2003 - 2004 Test I (Closed Book)

Course No.:

EEE UC 461 / INSTR UC 461

Course: Power Electronics

11 - 04 - 04

Time: 50 Minutes

M.M. = 40

Weightage = 20 %

- 1(a). Explain the various basic topologies of switched mode power converters.
- (b). A Buck-Boost converter operating in CCM has following parameters

 V_s = 12 V, $\,L$ = 250 uH , R_L = 20 ohms , C= 470 uF, f_s = 20kHz , D = 0.7

- i) Determine vo
- ii) sketch the inductor current it.
- iii) Determine the peak-peak voltage ripple in the output
- iv) Find the minimum L for which the converter would move to DCM operation (4+6)
- 2. What is a fly-back converter? With the help of a neat circuit diagram, explain the operation of a fly-back converter and draw the waveforms of magnetizing current and voltage across the magnetizing inductance. (2+2+4+1+1)
- 3. What are the methods of harmonic elimination used in inverters. Explain how notching can be used to eliminate third harmonic from the output? (3+7)
- 4(a). Briefly explain the methods by which the output voltage of a controlled AC DC converter can be varied.
- (b). Draw the output voltage waveform of a three phase AC-DC full wave controlled rectifier with $\alpha = 90^{\circ}$ supplied from a star connected three wire source. (3 + 7)
