SECOND SEMESTER - 2013-14

COMPREHENSIVE EXAMINATION(CB)

Course Name: Engineering Optimisation

Course Number: ME F344

Max. Marks: 80

Weightage: 40%

Date: 02-6-2014

Time: $2\frac{1}{2}$ hours

[10]

Write answers of Part A and Part B in separate answer books. All questions are compulsory. Non-programmable calculator is permitted.

PART A

1. A computer project consists of 5 modules- A, B, C, D and E. There are five programmers and each programmer can do each module with different efficiencies. Each programmer will be assigned to exactly one module and each module will be done by a single programmer. Following table gives the computer times(in hours) required for each module when done by different programmers:

		M	opu	LES		
Ś		Α	В	С	D	E
E E	1	10	15	12	25	30
₹ ¥	2	30	25	15	20	20
\\ \}	3	12	15	32	34	21
PROGRAMMERS	4	26	24	28	30	21
PR	5	21	35	42	34	22

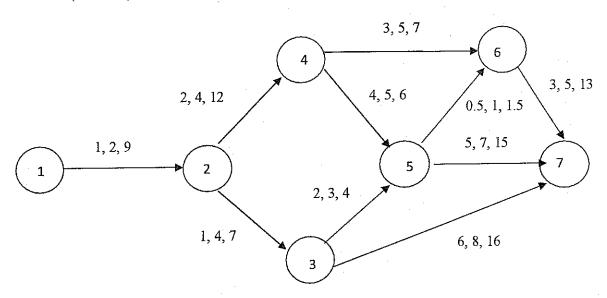
Find the optimum assignment which will minimize the total computer time required to complete all the modules. [8]

2. Solve the following LPP by two-phase Method:

Minimize
$$Z = 60x_1 + 50x_2$$

subject to
$$2x_1 + x_2 \ge 80$$
,
 $5x_1 + 2x_2 \ge 60$,
 $x_1, x_2 \ge 0$.

3. You need to buy some filing cabinets. You know that Cabinet X costs \$10 per unit, requires six square feet of floor space, and holds eight cubic feet of files. Cabinet Y costs \$20 per unit, requires eight square feet of floor space, and holds twelve cubic feet of files. You have been given \$140 for this purchase, though you don't have to spend that much. The office has room for no more than 72 square feet of cabinets. Formulate the problem as LPP in order to


Given the LPP:

Maximize
$$Z = 3x_1 + 5x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 \le 8$, $2x_2 + 5x_3 \le 10$, $3x_1 + 2x_2 + 4x_3 \le 15$, $x_1, x_2, x_3 \ge 0$

Find the range of c_3 , the objective coefficient of x_3 in which the optimal solution given by the table below remains unaffected. Also find the range of the value of the objective function. [6]

	C_i	3	5	4	0	0	0	
	Basic	x_1	x_2	x_3	81	<i>s</i> ₂	S ₃	solution
5	x_2	0	1	0	15/41	8/41	-10/41	50/41
4	<i>x</i> ₃	0	0	1	-6/41	5/41	4/41	62/41
3	x_1	-1	0	0	-2/41	-12/41	15/41	89/41
	Z_i	3	5	4	45/41	24/41	11/41	
	$C_i - Z_i$	0	0	0	-45/41	-24/41	-11/41	-

- 9. For the network given below, the time estimate (in days) t_o (optimistic), t_m (most likely) and t_p (pessimistic) are given in this order for each of the activities. [10]
 - a) Find the expected duration and variance of each activity.
 - b) Determine the critical path and the standard deviation of the critical path.
 - c) Find the expected project completion time.
 - d) What is the probability that the project will be completed in 25 days? Given $P(Z \le 1.43) = 0.9236$.

10. A certain design problem is formulated as:

Minimize
$$f(x) = x_1^2 + 2x_2^2 - 5x_1 - 2x_2 + 10$$

subject to $x_1 + 2x_2 - 3 \le 0$, $3x_1 + 2x_2 - 6 \le 0$, $x_1, x_2 \ge 0$.

- a) Write KKT's necessary conditions.
- b) Find the solution.

[10]

International Academic City, Dubai

SECOND SEMESTER - 2013-2014

TEST - II (OB)

Course Title: Engineering Optimisation

Course No.: ME F344

Max. Marks: 40

Weightage: 20%

Date: 23-04-2014

Time: 50 min.

Non-programmable calculator is permitted.

Attempt all the questions.

1. Solve the following transportation problem:

[12]

	D1	D2	D3	D4	Supply
S1	55	30	40	50	25
					2.0
S2	80	32	100	45	30
					00
S3	40	_ 60	95	35	40
		ĺ			70
Demand	50	10	20	15	

2. Consider the following LPP:

Maximize
$$Z = 4x_1 + 6x_2 + 2x_3$$

subject to $x_1 + x_2 + x_3 \le 3$,
 $x_1 + 4x_2 + 7x_3 \le 9$,
 $x_1, x_2, x_3 \ge 0$.

The final simplex table is

	Cj	4	6	2	0	0	
	Basic	x_1	<i>x</i> ₂	Х3	S_1	S ₂	Solution
4	x_1	1	0	-1	4/3	-1/3	1
6	X2	0	1	2	-1/3	1/3	2
	Zj	4	6	8	10/3	2/3	16
	Cj-Zj	0	0	-6	-10/3	-2/3	·· -

- a) What is the optimal solution of the dual of the above LPP(primal)?
- b) Find the revised optimal solution of the primal, if right hand side constants of the constraints are changed from (3, 9) to (7, 6). [10]

3. Find the dual of the following LPP:

Maximize
$$Z = 3x_1 + 4x_2 + x_3$$

subject to $x_1 - 3x_2 + 2x_3 \ge 10$,
 $6x_1 + 2x_2 - 2x_3 \le 30$,
 $x_1 + 3x_2 + x_3 = 5$,
 $x_1 \le 0$, x_2 unrestricted, $x_3 \ge 0$.

4. Solve the following assignment problem:

	T1	T2	T3	T4	T5
P1	12	8	11	18	11
P2	14	22	8	12	14
P3	14	14	16	14	15
P4	19	11	14	17	15
P5	13	9	17	20	11

[14]

[4]

International Academic City, Dubai

SECOND SEMESTER - 2013-2014

TEST - I (CB)

Course Title: Engineering Optimization

Course No.: ME F344

Max. Marks: 50

Weightage: 25%

Date: 05-03-2014

Time: 50 min.

Attempt all the questions.

1. Use graphical method to solve the following LPP:

Minimize Z = 20x + 10y

subject to

 $x + 2y \le 40$,

 $x \ge 12$

 $4x + 3y \ge 60$,

 $x, y \ge 0$.

[12]

2. Solve the following LPP by 2-phase method:

Maximize $Z = 5x_1 + x_2$

subject to

 $5x_1 + 2x_2 \le 20$,

 $x_1 \geq 3$,

 $x_2 \leq 5$

 $x_1, x_2 \ge 0$.

[16]

3. *Maximize* $z = 4x_1 + 3x_2 + 6x_3$

subject to the constraints:

$$2x_1 + 3x_2 + 2x_3 \le 440$$
,

 $4x_1 + 3x_2 \le 470$

 $2x_1 + 5x_2 \le 430$,

 $x_1, x_2 \ge 0$.

[16]

4. A company has two grades of inspectors, I and II to undertake quality control inspection. At least 1500 pieces must be inspected in an 8-hour day. Grade I inspector can check 20 pieces in an hour with an accuracy of 96% and Grade II inspector checks 14 pieces an hour with an accuracy of 92%. Wages of Grade I inspector are AED5.00 per hour while those of Grade II inspector are AED4.00 per hour. Any error made by an inspector costs AED3.00 to the company. If there are, in all, 10 Grade I inspectors and 15 Grade II inspectors in the company, formulate the LPP to find the optimal assignment of inspectors that minimizes the daily inspection cost.

International Academic City, Dubai

SECOND SEMESTER - 2013-2014

QUIZ-II (CB)

Course Title: ENGINEERING (OPTIMISATION	\mathbf{C}
-----------------------------	--------------	--------------

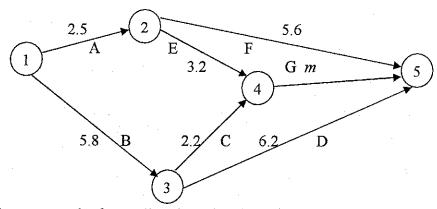
Course No.: ME F344

Max. Marks: 14

Weightage: 7%

Date: 14-5-2014

Time: 20 min.


N	A `	л Л	T.
J 7	-	Y	1.

ID No:

Instructor:

Attempt all the questions. No extra sheets will be given for calculations/rough works. Fill in the blanks with correct answers.

1.

In the above network of a small project, duration of each activity is given in hours. If the earliest completion time(duration) of the project is 15.4 hours, the critical path is _____ and the value of m is ____ [2+1]

- 2. A symmetric matrix of order 10 has _____ number of principal minors of order 5. [1]
- 3. The values of the leading principal minors of $A = \begin{bmatrix} 2 & -2 & 1 \\ -2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ are _____,

_______[2]

4. The Hessian matrix for the function $f(x_1, x_2) = 2x_1^2 - 4x_1x_2 + 3x_2^2 - 4x_1$ is: [2]

Page 1 of 2

- 5. In a project, optimistic, pessimistic and most likely time estimates of an activity are 5, 8, 6 days respectively. The expected duration of this activity is _____ and the expected standard deviation of the activity is _____. [2]
- 6. Write KKT's conditions for the following optimization problem:

Maximize
$$f(x_1, x_2) = 2x_1^2 - 5x_1x_2 + x_2^2$$

subject to $2x_1 - 4x_2 \le 20$, $x_1, x_2 \ge 0$. [4]

International Academic City, Dubai

SECOND SEMESTER - 2013-2014

QUIZ – II (CB)

Course Title: EN Max. Marks: 14	GINEERING OPTION Weightage: 7%	MISATION Cou Date: 14-5-2014	rrse No. : ME F344 Time: 20 min.
NAME:	ID N	No:	Instructor:
Attempt all the quests Fill in the blanks wis 1.	th correct answers. 5.5 A E	5.6 F G 2	Trough works.
and the second s		ect, duration of each action) of the project is 1 and the value of	•
		number of prir	
3. The values of	the leading principa	1 minors of $A = \begin{bmatrix} -4 \\ -2 \\ 1 \end{bmatrix}$	1 3 are, 3 2
	·	$(x_1, x_2) = x_1^2 - 6x_1x_2 + 4x$	[2]

Page 1 of 2

- 5. In a project, optimistic, pessimistic and most likely time estimates of an activity are 5, 10, 6 days respectively. The expected duration of this activity is _____ and the expected standard deviation of the activity is _____. [2]
- 6. Write KKT's conditions for the following optimization problem:

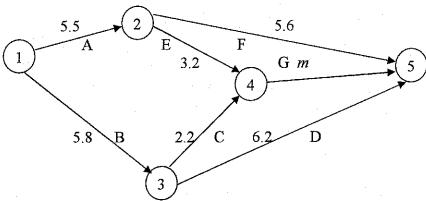
Maximize
$$f(x_1, x_2) = 10x_1^2 - 8x_1x_2 + 6x_2^2$$

subject to $x_1 - 4x_2 \le 20$, $x_1, x_2 \ge 0$. [4]

International Academic City, Dubai

SECOND SEMESTER - 2013-2014

QUIZ - II (CB)


Course Title: ENGINEERING OPTIMISATION	Course No.: ME F344
--	---------------------

Max. Marks: 14 Weightage: 7% Date: 14-5-2014 Time: 20 min.

NAME:	ID No:		Instructor:
		•	

Attempt all the questions. No extra sheets will be given for calculations/rough works. Fill in the blanks with correct answers.

1.

In the above network of a small project, duration of each activity is given in hours. If the earliest completion time(duration) of the project is 15.4 hours, the critical path is

and the value of m is ______ [2+1]

- 2. A symmetric matrix of order 8 has _____ number of principal minors of order 5. [1]
- 3. The values of the leading principal minors of $A = \begin{bmatrix} -4 & -2 & 1 \\ -2 & 1 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ are ______

______. [2]

4. The Hessian matrix for the function $f(x_1, x_2) = 5x_1^2 - 3x_1x_2 + 2x_2^2 - x_1$ is: [2]

Page 1 of 2

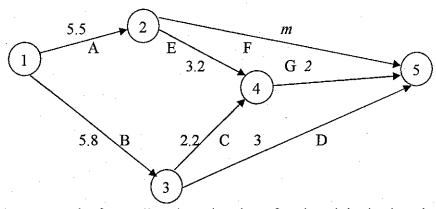
- 5. In a project, optimistic, pessimistic and most likely time estimates of an activity are 5, 10, 6 days respectively. The expected duration of this activity is _____ and the expected standard deviation of the activity is _____. [2]
- 6. Write KKT's conditions for the following optimization problem:

Maximize
$$f(x_1, x_2) = 4x_1^2 - 3x_1x_2 + 2x_2^2$$

subject to $2x_1 - 4x_2 \le 20$, $x_1, x_2 \ge 0$. [4]

International Academic City, Dubai

SECOND SEMESTER - 2013-2014


QUIZ - II (CB)

Course Title: ENG	SINEERING OPTI	MISATION Cou	rse No. : ME F344
Max. Marks: 14	Weightage: 7%	Date: 14-5-2014	Time: 20 min.

NAME: ID No: **Instructor:**

Attempt all the questions. No extra sheets will be given for calculations/rough works. Fill in the blanks with correct answers.

1.

In the above network of a small project, duration of each activity is given in hours. If the earliest completion time(duration) of the project is 14.4 hours, the critical path is _____ and the value of m is _____ . [2+1]

- 2. A symmetric matrix of order 6 has _____ number of principal minors of order 4. [1]
- 3. The values of the leading principal minors of $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 3 & 3 \end{bmatrix}$ are _

[2] 4. The Hessian matrix for the function $f(x_1, x_2) = 20x_1^2 - 5x_1x_2 + 10x_2^2 - 7x_1$ is:

[2]

Page 1 of 2

- 5. In a project, optimistic, pessimistic and most likely time estimates of an activity are 5, 10, and the expected standard deviation of the activity is ______. [2]
- 6. Write KKT's conditions for the following optimization problem:

Maximize
$$f(x_1, x_2) = 12x_1^2 - 6x_1x_2 + 3x_2^2$$

subject to $x_1 - 4x_2 \le 20$, $x_1, x_2 \ge 0$. [4]

International Academic City, Dubai

SECOND SEMESTER - 2013-2014

OUIZ – I (CB)

Course Ti	tle: EN	GINEERU	NG OPTIM	IIZATION	Course	No. : ME F344
Max. Mar		Weighta			26-03-2014	Time: 20 min.
NAME:				ID No:		Sec:
Attempt all the pencil. Multip	ple answ	ers will be t	reated as inc	be given for calcu orrect answers.	lations/rough wo	rks. Do not use
			ocated cells 3 destinatio		sible solution	of a transportation [2]
		_			alanced one a du	ımmy warehouse
		_	nd	*		[2]
4 - 2		ehouses		 		
	DI	D2 D3	Capacity			•
.S F	1 3	5	7 50		•	
Factories			0 34			
F						
Demand						
In the following in the state of the state o	lowing	u _i ,v _j table f	for a basic fe	easible solution o	of a transportation	on problem where
'*' indica	tes occu	apied cell, a	ı =, b	c =	, d =	
		Warehouses	5			
	D1	D2 D3	$\neg u_i$			
F	1 3	5	7 2			
	*	*				
Si F2	2 5	9 1	0			
Factories Factories			6			
17.2	12		5			

4.	. In a maximization type LPP with two deci	sion variables x , y optimum value	or in
	objective function is obtained at two corner	points A(4, 2) and B(2, 6). The obj	jectiv
	function is $Maximize Z = \underline{\qquad} x + \underline{\qquad} y$. (Fill x	in the coefficients of x and y)	[2]
5.	In Q No. 4, find a point (x, y) different from	points A and B which will give opt	imun
	value of the objective function. $x = $ and	<i>y</i> =	[2]
6.	In branch and bound method, one sub-problem	SP is chosen for branching. If the op	otimal
	solution of SP is $x = 1.5$, $y = 2$, $z = 10$, then new	sub-problems obtained from SP are	
	SP1: SP with additional constraint		
	SP2: SP with additional constraint	·	[2]
7.	The LPP defined below is (mixed Maximize $Z = 20x + 10y$	/pure) integer programming problem:	
	subject to		
	$x + 2y \le 40,$		
	$x \ge 12$,		[2]
	$4x + 3y \ge 60,$		
	x, y are non-negative integers.		

International Academic City, Dubai

SECOND SEMESTER - 2013-2014

QUIZ-I (CB)

Course	Title: EN	GINEERIN	G OPTIMIZ	ATION	Course I	irse No. : ME F344	
Max. M	arks: 16	Weightag	e: 8%	Date: 26-0	3-2014	Time: 20 min.	
NAME:				ID No:		Sec:	
pencil. Mu	ltiple answe		ated as incorre	iven for calculation ct answers.	s/rough work	s. Do not use	
proble 2. To cor	m with 5 can wert the following the months of the months o	origins and 6 ollowing tran	destinations i	blem in to balance		[2]	
Factories	F1 3 F2 5 F3 12 nd: 32	D2 D3 5 7 9 10 2 6 31 20	Capacity 50 34 21				
3. In the f	cates occu	u _i ,v _j table for		ole solution of a tr $c = $		problem where	
Factories	F1 3 * F3 10 *	Warehouses D2 D3 8 7 * 9 10 2 8 *	u _i 4 5				
	√j: a	b c				[4]	

Page 1 of 2

۲ŧ.	In a maximization type EPP with two decision variables x , y optimum value ()! iffe		
	objective function is obtained at two corner points A(4, 2) and B(1, 6). The objective	ective		
	function is Maximize $Z = \underline{ } x + \underline{ } y$. (Fill in the coefficients of x and y)	[2]		
5.	In Q No. 4, find a point (x, y) different from points A and B which will give opti	imum		
	value of the objective function. $x = \underline{\hspace{1cm}}$ and $y = \underline{\hspace{1cm}}$.	[2]		
6. In branch and bound method, one sub-problem SP is chosen for branching. If the				
	solution of SP is $x = 0.5$, $y = 2$, $z = 10$, then new sub-problems obtained from SP are			
	SP1: SP with additional constraint;			
	SP2: SP with additional constraint	[2]		
	The LPP defined below is (mixed/pure) integer programming problem: $Maximize Z = 20x + 10y$			
	subject to			
	$x + 2y \le 40,$			
	$x \ge 12$	507		
	$4x + 3y \ge 60,$	[2]		
	$x \ge 0$ and y is non-negative integer.			