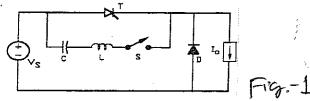
BITS, Pilani – Dubai International Academic City – Dubai


III year EEE/ EIE, II Semester 2011-12 / Comprehensive Exam.

Course Title –Power Electronics(EEE C 461/ INSTR C461) Full Marks-80(Weightage 40%) Duration—3 Hrs. Date-14/06/2012

(1)In context to "TURN-ON Control of BJT Base Drive", derive the expression for $i_B(t)$ using Laplace Transform method (with the relevant circuit diagram), starting from fundamentals. Also calculate the time instant at which the base current ($i_B(t)$) becomes 90% of its initial value.

Given data are: (i) R_1 = 4.0 ohm (ii) C_1 =1.0 micro farad (iii) Final value of base current is 60% of its initial value ------ [7+5 marks]

(2) (a) In context to the Resonant Commutation of Thyristor(see Fig.1), following conditions are given: (i) Initial voltage across capacitor= V_s volts(ii) Initial current through the inductor= I_1 amps. Applying Laplace Transform method, prove that current through the inductor is given as, $i_L(t) = I_1 \cos(\omega_0 t) - C$ $V_s \omega_0 \sin(\omega_0 t)$ ------where ω_0 represents the resonant frequency in rad./sec. The switch(S) is closed at t=0.

(b) In connection with Question2(a) , calculate the value of the inductor(L) if the Thyristor has a turn-off time of 20 $\mu\text{-sec}$. The given data are: V_s =215 volts, Resonant frequency= 18 KHz. and I_1 =0-----[7+5 marks]

(3) A voltage pulse of height of V_{DD} volts and pulse width of "a" seconds, is injected into the gate of a MOSFET in context to its "Turn-on" phenomenon. Following assumptions (changes) and symbols are to be incorporated:

(i) Gate to drain capacitance is realistic and it is equivalent to the parallel combination of ideal capacitor (C_{gd}) and resistor (R_{gd})

(ii) Gate to source capacitance is realistic and it is equivalent to the parallel combination of ideal capacitor (C_{gs}) and resistor (R_{gs})

combination of ideal capacitor(
$$C_{gs}$$
) and resistor(R_{gs})
(iii) $\frac{1}{R} = \frac{1}{R_g} + \frac{1}{R_{gs}} + \frac{1}{R_{gd}}$ (iv) $C = C_{gs} + C_{gd} = \frac{\tau}{R}$

Prove that in Mode-1(using Laplace Transform method),

$$v_{gs}(t) = \frac{RV_{DD}}{R_g} \left\{ \left(1 - e^{\frac{-t}{\tau}} \right) u(t) \right\} - \frac{RV_{DD}}{R_g} \left\{ \left(1 - e^{\frac{-t+a}{\tau}} \right) u(t-a) \right\},\,$$

where, u(t) and u(t-a) are the Unit Step Function and Shifted Unit Step Function, respectively and $v_{gs}(0) = 0$.----[12 marks]

(4) A chopper fed D.C series motor is working under regenerative mode. The machine is having following data:

$$V_s = 600 \ volts; \ R_a = 0.02 \ ohm; ---$$
 [P.T.O]

 $R_f = 0.03$ ohm; $K_v = 16.27$ mv/A-rad./sec.; $I_a = 265$ A(average) Duty cycle of the chopper=60% and armature current---continuous.

After deriving the relevant formulae and drawing a suitable circuit diagram for the above said drive system, calculate:

- (i) Average voltage across chopper(V_{ch})
- (ii) Power regenerated to the D.C supply (Pg)
- (iii) Equivalent load resistance of the motor acting as generator
- (iv) The minimum and maximum permissible braking speeds of the motor(in r.p.m)
- (v) Motor speed (in r.p.m)-----[3+1+9 marks]
- (5)(a) Draw the labeled circuit diagram and all relevant waveforms of a single phase full converter (controlled rectifier) with a large inductor as load. What is the purpose of using large inductor as load-----explain.----- [2+2+1 marks]
- (b) In context to question 5(a), calculate b_1 , b_3 , b_5 (Harmonic coefficients) of input current $[i_s(t)]$ after deriving the expression for b_n . Given data are: $I_a = 1.2$ amp---fixed value; Firing angle of Thyristor (α) = 20° ----- [3+4 marks]
- (6) (a) Draw the labeled circuit diagram of a single phase bridge inverter (V.S.I) and draw the waveform of output voltages (v_{ao} , v_{bo} and v_{ab})-- [1+2 marks]
- (b) Develop the <u>"Switching State Table"</u> of the inverter in question6(a), with conventions given as: upper switch on--- STATE=1; lower switch on--- STATE=0--[3 marks]
- (c) Derive the expression for the harmonic coefficient (b_n) of the output voltage (=voltage across load= v_{ab}) of the above-said inverter, starting from fundamentals.-- [4 marks]
- (7) (a) Draw the basic circuit diagram(labeled) of a Buck Converter or Boost Conveter-----[2 marks]
- (b) Draw the equivalent circuits of Mode-1 and Mode-2 of the above-said converter (corresponding to any one of them) and draw the corresponding relevant waveforms.---- [3 marks]
- (c) Prove that $\Delta I = \frac{(V_s V_a)k}{fL}$ ------for Buck Converter----[4 marks]
 OR

OR Prove that $\Delta I = \frac{(V_s - V_a)(k-1)}{fL}$ -----for Boost Converter

BITS, Pilani - Dubai

International Academic City - Dubai

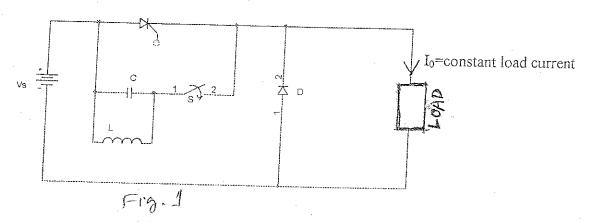
III year EEE/ EIE, II Semester 2011-12 / Test-2 (OPEN BOOK) Course Title –Power Electronics(EEE C 461/ INSTR C461)

Full Marks - 20(Weightage 20%) Duration—50 min

Date: 20--05-2012(Only Text book and hand written class notes allowed)

(1)In context to the Antisaturation Control Circuit of BJT Base Drive System , calculate: (i) " β " (answer should be in nearest integer value) and (ii)Hence, the collector current magnitude, without clamping. Assume that " β " remains same in the cases of "Without clamping" and "With clamping".

The given data are: $V_{CC} = 100.0$ volts, $V_{d1} = 2.1$ volts, $V_{d2} = 0.9$ volts, $V_{BE} = 0.7$ volts, $V_{B} = 15.0$ volts, $V_{B} = 2.5$ ohm, $V_{C} = 1.5$ ohm, Collector current(with clamping) = 67 amps—---[5 marks]


(2) Consider a n-channel MOSFET (TURN ON, Modes 1&2) having the following data:

 V_{DD} =15.0 volts, I_o =40.0 amps, V_T =3.0 volts, C_{gs} =2600 picofarad , C_{gd} =350 picofarad, g_m =25.0 siemens, R_g =9.0 ohm . Calculate the following: (a) The time instant at which the current through the clamping diode will be 40% of the load current (b) Duration of Mode-1 (c) Duration of Mode-2 [3+3+2 marks]

(3) In context to the Impulse Commutation of a Thyristor (Fig.1), the capacitor is precharged with a voltage of "- V_c " volts. "t=0" is counted when the switch(S) is closed. Initial value of current through the inductor is zero. Reverse recovery time (of junction J_2) within the Thyristor structure may be ignored. Prove that the "Turn-off time(t_{off})" of the Thyristor may be expressed as:

[7M]

$$t_{off} = \sqrt{LC} \tan^{-1}(\frac{V_c - \sqrt{C/L}}{I_0}).$$

BITS, Pilani – Dubai

International Academic City - Dubai III year EEE/EIE, II Semester 2011-12 / Test-1

Course Title –Power Electronics(EEE C 461/ INSTR C461)

Full Marks – 25 (Weightage 25%) Duration—50 min

1

Date: 01---04---2012

- (1))(a) Draw the circuit diagram (labeled) of a three phase full-converter using Thyristors, with highly inductive load. Draw also the waveforms of output voltage and input current (phase "a") of this circuit.---[1+2 marks]
 - (b) With reference to Question 1(a), prove that the r.m.s output voltage(V_{rms}) can be expressed as: $(V_{rms})^2 = 3 (V_m)^2 [(1/2) + {(3\sqrt{3})/(4\pi)}]$ $Cos(2\alpha)$].

Hence calculate the value of "\aa" when following data are given:

 V_{rms} =150 volts and v_{an} =Input phase "a" voltage = 170 Sin(ωt)—[4+2 marks]

- (2) (a) Draw the circuit diagram (labeled) of a single phase semi-converter using Thyristors, with highly inductive load. Also explain why freewheeling diode is necessary to be included in such circuit.
- (b) Draw the wave form of the current through the free-wheeling diode of the circuit in Question 2(a) and hence derive the expression for the Harmonic Coefficient, "b_n" and "dc component" of this current.-- [1+2+1+4+2]
- (3) The output voltage of a single phase full wave bridge rectifier circuit has been expressed as $v_0(t) = (2V_m/\pi) + (4V_m/\pi) \sum [\{(-1)/(n+1) (n-1)\}$ Cos (not)]-----for n=2,4,6,8---. The input to the rectifier is a 120 volts(rms), 50 Hz. source. Load resistance is 500 ohms. Design a series inductor, "L" that limits the RMS ripple current, Iac to less than 5% of Idc ----[6 marks]

-----END-----

BITS, Pilani – Dubai

[Set—A]

International Academic City – Dubai III year EEE/ EIE, II Semester 2011-12 / Quiz-2/ Set--A

Course Title –Power Electronics(EEE C 461/INSTR C461)

Full Marks – 14 (Weightage 07%) Duration—20 min Date: 02---05—2012/ Name------ Id No.---

1	$(1)D_1$	าลงงาล	laheled	Two-T	ransistor	Model	Diagram	of a	Thyristor	٢3	markel
ų		avva.	iaucicu	I WO-I	1 alibibiol	MIOUGI	Diagram	UI a	11111115101	. 1 .	mans

(2)Draw a labeled circuit diagram of "ANTISATURATION CONTROL" of BJT Base Drive System.-----[3 marks]

- (3)" In context to a Thyristor, Latching Current is of lesser value as compared to that of Holding Current"---Statement—FALSE/TRUE?----[1 mark]
- (4) What are the differences between "Resonant Commutation" and "Impulse Commutation" methods of Thyristor?---Mention any two points.-- [3 marks]

(5)In the case of Impulse Commutation of Thyristor, given data are: Device Turn-off time = 20μ -sec; Constant load current= 50 amp., Initial voltage across Capacitor= -169 volts. Calculate the value of the capacitor (assuming linear charging)---. [2 marks]

(6) In the case of "Turn-On Control of BJT Base Drive System (given cicuit diagram in Fig.1)", given data are: V_1 =15 volts, V_{BE} =0.7 volts, R_1 =2.5 ohms , R_2 =2.0 ohms. Calculate final value of Base Current.--- .[2 marks]

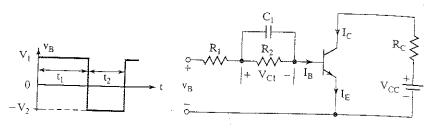


FIGURE 1

BITS, Pilani – Dubai

[Part—A]

International Academic City - Dubai

III year EEE/ EIE, II Semester 2011-12 / Quiz-1/ Part--A Course Title –Power Electronics(EEE C 461/ INSTR C461)

Full Marks - 08 (Weightage 08%) Duration—20 min

Date: 13---03---2012/ Name------ Id No.----- Id No.-----

(1) One Harmonic (Fourier) Coefficient is given as $a_n = (4V_m/\pi) [(-1)/(n+1)]$ (n-1)] The corresponding Power Electronic hardware will be:

(a) A full wave bridge rectifier using Thyristor (b) A half-wave rectifier using Thyristor (c) A full bridge rectifier using Diode-----[1 mark]

(2) With reference to the following waveform for an input current of a power electronic circuit, prove that (after doing Harmonic Analysis): $b_n = (4I_a/n\pi) \cos(n\alpha)$ ----for n=1,3,5,7----, where " α " is the firing angle

of the Thyristor.----[4 marks]

Part-A

Name-----Id No.-----

(3)The output voltage of a particular power electronic converter circuit(with R-L load) has been expressed as $v_o(t) = (2V_m/\pi) + (4V_m/\pi) \sum [(-1)/(n+1) \ (n-1)]$ Cos $(n\omega t)$ -----for n=2,4,6,8----. Prove that the R.M.S value expression of the dominant A.C Component (Harmonic) of the output current will be :

 $I_{a.c,dominant} = [(4V_m/\pi)(1/\sqrt{2}) (1/3)][1/{R^2 + 4\omega^2L^2}]^{0.5}]$ -----[2 marks]

(4) Out of the following, is which expression correct?---for a power electronic system:-----[1 mark]

(a) $PF=(I_{s1}/I_s)[1/(DPF)]$ (b) $PF=(I_{s1}/I_s)(DPF)$ (c) $PF=(I_s/I_{s1})[1/(DPF)]$