BITS Pilani, Dubai Campus Dubai International Academic City, Dubai Third year – Second semester 2011 – 2012

AAOC C341 – Numerical Analysis Comprehensive Examination (Closed Book)

Date: 05.06.2012 Time: 3 hours Max. Marks: 120

Weightage: 40%

ANSWER PART - A AND PART - B SEPARATELY

PART - A

1. Find the truncation error in approximating y(x) by $\tilde{y}_1(x) = x$ at x = 0.5, where

$$y(x) = \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$
 [5]

2. Find a root of the following equation in the interval (0, 1) at the end of third iteration using Bisection method with 5 digit approximation and rounding:

$$\cos x - xe^x = 0 ag{5}$$

- 3. Find a root of the equation $x^3 5x + 1 = 0$ at the end of first iteration by Muller's method starting with x = 0, 0.5, 1. Use 5 digit approximation and rounding. Also state the starting values for the next iteration. [10]
- 4. Find the 1, 2 and ∞ norms of the following matrix:

$$A = \begin{pmatrix} 5 & -9 & 6 \\ 2 & -7 & 4 \\ 1 & 5 & 8 \end{pmatrix}$$
 [5]

5. Find the inverse of the following matrix using Gauss elimination method:

$$A = \begin{pmatrix} 0 & 2 & 4 \\ 2 & 4 & 6 \\ 6 & 2 & 2 \end{pmatrix}$$
 [8]

6. Solve the following system of equations by Gauss Seidel method starting with (0, 0, 0). Do 2 iterations with 5 digit approximation and rounding.

$$20x + y - 2z = 17$$

 $3x + 20y - z = -18$
 $2x - 3y + 20z = 25$

7. Find the missing value using Newton's divided difference interpolation:

$$x: 1 2 4 5 6$$

 $f(x): 14 15 5 - 9$ [10]

8. Find y(1.5) and y'(1) for the following data using natural cubic spline with 5 digit approximation and rounding:

$$x: -1 \quad 0 \quad 1 \quad 3$$

 $y: -1 \quad 1 \quad 3 \quad 35$ [10]

1. Find the approximate value of f'(0.25) for the following values of f(x) using 7 digit approximation and rounding:

$$x: 0.2 0.4 0.6$$

 $f(x): 0.9798652 0.9177710 0.8080348$ [5]

2. The axial displacement (du) of an elemental length (dx) of a bar of length 1 unit under a load P is given by $\frac{du}{dx} = \frac{P}{EA}$ where E is Young's modulus and A is the cross-sectional area. Determine the axial displacement of the bar for the data P = 500 lb, $E = 30x^{-2}$ psi and $A = 2e^{-x}$ by Simpson's $\frac{1}{3}$ rule by taking

$$h = \frac{1}{6}$$
 with 5 digit approximation and rounding. [8]

3. Find a, x_1, b, x_2 so that the following rule is exact:

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = af(x_1) + bf(x_2)$$
 [8]

4. Find the Fourier series of the following function on the given interval:

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x^2, & 0 \le x < \pi \end{cases}$$

Use the result to show
$$\frac{\pi^2}{12} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$$
 [12]

5. Using 4th order Runge-Kutta method evaluate the value of y when x = 0.1 with 5 digit arithmetic and rounding given that

$$\frac{dy}{dx} = -2x - y; \ y(0) = -1.$$
 [10]

6. Find the solution of the following initial value problem at x = 0.4 with h = 0.1 using 5 digit arithmetic and rounding.

$$y' = -1 + 2x + y$$
, $y_0 = 1$, $y_1 = 1.0103$, $y_2 = 1.0428$, $y_3 = 1.0997$

Use the following Admas predictor corrector method to get the solution

$$y_{n+1,p} = y_n + \frac{h}{24} \left(55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3} \right)$$

$$y_{n+1,c} = y_n + \frac{h}{24} \left(9f_{n+1} + 19f_n - 5f_{n-1} + f_{n-2} \right)$$
[7]

7. Solve the following boundary value problem by finite difference method using 5 digit arithmetic and rounding:

$$\frac{d^2y}{d\theta^2} + \frac{y}{4} = 0, \ y(0) = 0, \ y(\pi) = 2 \text{ with } h = \frac{\pi}{4}.$$
 [5]

8. Find the largest eigen value and the corresponding eigen vector of the following matrix starting with $(1, 0.5, -0.5)^T$ at the end of second iteration using 5 digit arithmetic and rounding:

$$A = \begin{pmatrix} 12 & 6 & -6 \\ 6 & 16 & 2 \\ -6 & 2 & 16 \end{pmatrix}$$
 [5]

BITS Pilani, Dubai Campus Dubai International Academic City, Dubai Third year – Second semester 2011 – 2012

AAOC C341 – Numerical Analysis Test - 2 (Open Book)

Date: 22.04.2012 Time: 50 Minutes

Max. Marks: 60 Weightage: 20%

ANSWER ALL QUESTIONS

1. Express the function $f(x) = -3x^3 + 8x^2 - 5x + 4$ in terms of Chebyshev polynomials. [6]

2. The thermal conductivity of iron(k) is found to vary with temperature(T) as follows:

Т	200	600	1000	1400
k	1	0.4	0.3	0.25

Interpolate at T = 250 using Gregory Newton's interpolation formula with 4 digit arithmetic. [12]

3. Form the divided difference table for the function $f(x) = \frac{1}{x}$, based on the points x_0, x_1, x_2, x_3 . [12]

4. Fit a natural cubic spline curve corresponding to the interval [2, 3] for the following data with five digit arithmetic. Hence evaluate the spline value at x = 2.5.

5. When a sinusoidal voltage $E \sin \omega t$ is passed through a half-wave rectifier which clips the negative portion of the wave, the resulting periodic function is given by

$$f(t) = \begin{cases} 0, & -\pi/\omega < t < 0 \\ E \sin \omega t, & 0 < t < \pi/\omega \end{cases}$$

Develop this function in a Fourier series.

[15]

BITS PILANI, DUBAI CAMPUS

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

THIRD YEAR - SECOND SEMESTER 2011-2012

AAOC C341 - NUMERICAL ANALYSIS

TEST - 1 (CLOSED BOOK)

DATE: 08.03.2012

MAX. MARKS: 75

TIME: 50 MINUTES

WEIGHTAGE:25%

ANSWER ALL QUESTIONS

- 1. Evaluate the cubic polynomial $3.01x^3 + 4.87x^2 + 4.53x + 1.45$ at x = -0.123 using three digit arithmetic with rounding at each arithmetic operation, in nested form. Also find the relative error. [10]
- 2. Find a root of the equation $f(x) = x^3 5x + 1$ in the interval [0, 1] at the end of third iteration by Regula-Falsi Method using 5 digits arithmetic with rounding. [15]
- 3. Find a root of multiplicity three by Newton's method for the equation $f(x) = x^4 8x^3 + 18x^2 16x + 5$ starting with x = 2 using 5 digits arithmetic with rounding at the end of third iteration. [10]
- 4. Use Muller's Method to find a root of the equation $\cos 3x + 1 = e^{x^2}$ starting with 0, 0.5, 1 at the end of first iteration with five digit arithmetic and rounding. Also state the starting values for the next iteration. [20]
- 5. Find four different rearrangements to find a fixed point for the function $f(x) = x^4 2x 1$ in the interval [1, 2]. Also verify the condition for convergence of all possibilities. [20]

BITS Pilani, Dubai Campus Dubai International Academic City, Dubai III YEAR II SEMESTER 2011-12 QUIZ – II (Closed Book)

Course Title: Numerical Analysis Course No: AAOC C341 Weightage: 7% Date: 15.05.2012 Time: 20 minutes Max marks: 21 Name of the Student: ID No: _____ 1. Find f'(0.1) and f''(0.3) from the given data using 3 digit arithmetic with rounding. [7] 0.10 0.20 0.30 0.40 0.50 f(x): 0.425 0.475 0.400 0.450 0.525 2. Evaluate the integral $I = \int_{0}^{2\pi} \cos^2 x \, dx$ by splitting the interval into 6 subintervals by Trapezoidal rule using 5 digit arithmetic with rounding. [7] 3. Evaluate the integral $I = \int_{0}^{2} ye^{2y} dy$ by 2-point Gauss Legendre quadrature using 5 digit [7] arithmetic with rounding.

[6]

BITS Pilani, Dubai Campus Dubai International Academic City, Dubai III YEAR II SEMESTER 2011-12 QUIZ – 1 (Closed Book)

Course ride. Numerical Analysis	Course No. AAOC C341		
Date: 27.03.2012	Weight age: 8%		
Time: 20 minutes	Max marks: 24		
Name of the Student:			
ID No:			
What do you mean by an ill conditioned sys	stem and check whether the following system is		
conditioned or ill conditioned?			

 $x_1 + x_2 = 1$; $1.001x_1 + x_2 = 2$

2. A fin, with a uniform circular section has a root temperature af $140^{\circ}C$ and an ambient temperature of $40^{\circ}C$. It has a thermal conductivity of k=70 and a heat transfer coefficient of h=5. When the convection loss from the end is also considered, the nodal temperatures T_1, T_2 and T_3 are governed by the equation

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 72.67 & -23.83 \\ 0 & -23.83 & 41.33 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix} = \begin{pmatrix} 140 \\ 4336 \\ 700 \end{pmatrix}$$

Determine the values of the nodal temperatures using Gauss-Jordan method using 4 digit arithmetic with rounding.

3. Find a root of the following system of equations starting with (0, 0, 0) at the end of first iteration using Gauss-Seidel method with 5 digit arithmetic and rounding. What is the minimum number of iterations required to get a solution correct to 5 significant digits?

$$4.63x_1 - 1.21x_2 + 3.22x_3 = 2.22$$

$$-3.07x_1 + 5.48x_2 + 2.11x_3 = -3.17$$

$$1.26x_1 + 3.11x_2 + 4.57x_3 = 5.11$$