Comprehensive Examination Question Paper

BITS, Pilani – Dubai. International Academic City

III Year SECOND Semester

2009-2010

Degree: B.E.(Hons.). Branch: C.S.

Course No: CSC 362 Course Title: Programming Languages and

Compiler Construction

Date: 25/05/10 Tuesday Time: 10 a.m.- 1 Noon Total marks: 80 Weight-age: 40% Data provided are complete. *Closed Book*.

This question paper has 5 pages.

PART A: (write in PART A answer booklet)

Answer all Questions

- A.1.) What are the advantages of DELAYED LINKING w.r.t. Language Systems? [2M]
- A.2.) What are the functions of a Lexical Analyzer?

[2 M]

A.3.) What is the purpose of def and use in liveness analysis?

[2 M]

A.4.) Define $FIRST(\Omega)$ and FOLLOW(A) in top down parsing.

[2 M]

(note: here α is any string of grammar symbols; A: is a non-terminal.)

- A.5) Distinguish between CALL by REFERENCE and CALL by VALUE in parameter passing.
- **A.6.)** Write a PICO LISP program to implement the following RECURRENCE RELATION: (Assume that n is $\geq = 0$). **T(n)** =
 - $n^2 + 4n + 3$, for n = 0, 1.
 - 2T(n-1) + 3T(n-2) for n > 1.

[5 M]

A.7.) SWI PROLOG program & Queries for a simple database application

[7 M]

a) Store the following information in a SWI PROLOG Database.

AUTHOR		BOOK		
AID	ANAME	BID	BNAME	
		~~~~~~~~~~~		
a1	aho	<b>b</b> 1	multimedia	
a2	sethi	b2	dragon book	
a3	ullman	b3	java_compiler	
a4	appel	b4	database	
a5	bvk	b5	swe	

## BOOK AUTHOR

BID	AID
b1	a5
b2	al
b2	a2
b2	a3
b3	a4
b4	a3
b5	a2
b5	a5

## b) Answer these queries in SWI PROLOG:

- List all books of a given AID (author id). i.e. you must display the *author name* and *book name(s)* for a given AID.
- List all authors of a given BID (book id). i.e. you must display the book name and author name(s) for a given BID.

example:

When you give AID as a5, you must display this output:

bvk multimedia bvk swe

## A.8.) SHIFT-REDUCE PARSING ACTIONS in a tabular form

[8 M]

Consider the following CFG:

 $E \rightarrow E + E$ 

 $E \rightarrow E * E$ 

 $E \rightarrow (E)$ 

 $E \rightarrow id$ 

You are given the following input string: (id1 * id2) + (id3 + id4)

Now, Tabulate the SR parsing actions for the above input string as shown below:

STACK	INPUT	ACTION
************		

**A.9.)** Write a JAVA program involving Class Inheritance for a simple book information system as specified below:

[10 M]

- Create a base class **Info** that can store the following attributes [i.e. data items] **name** (of type string), **author** (of type string) and **year** (of type integer). This class can contain a *constructor* to set the values for the attributes **name**, **author** and **year**. This class contains another *method* to display the **name**, **author** and **year**.
- Create a derived class **Book** that extends the base class. This class can store an attribute **categorycode** of type integer. (Assume that the *categorycode* can have a value 1 or 2 or 3 when an object is created). This class can contain a constructor to set the values for **name**, author, year and categorycode. This class contains another *method* to display the **name**, author, year, categorycode. It also prints **one** of the following *messages* according to the value of categorycode:

If categorycode=1, it displays the message, "Philosophy".

If categorycode=2, it displays the message, "Novel-Fiction".

If categorycode=3, it displays the message, "Autobiography".

-Create a Class **Inheritance_Testing**. This class can store the **main** function. Now you create the following three objects for the class **Book**:

"The Firm" "John Grisham 1991 2

"My Experiments with Truth" "M. K. Gandhi" 1925 3

"By Parallel Reasoning" "Paul Bartha 2010 1

Now print all these objects along with their appropriate messages.

## **PART B** (write in PART B answer booklet)

Answer all Questions

- B.1.) Distinguish between SYNTHESISED ATTRIBUTE and INHERITED ATTRIBUTE in syntax directed definition. [2 M]
- B.2.) Explain Common Sub-expression Elimination in CODE OPTIMIZATION with an example. [2 M]
- B.3.) Define FLOW OF CONTROL CHECKS and UNIQUENESS CHECKS in TYPE CHECKING. Mention an example in each category. [2 M]
- B.4.). Briefly outline the action of REFERENCE COUNTING in garbage collection (GC) strategy. [2 M]
- B. 5). Give a brief outline (steps) of an Overall Algorithm w.r.t. Register Allocation.

[5 M]

**B.6.)** Consider a simple assignment statement:

$$d := (a-20) + (a+2) - (c+d)$$

You are required to generate CODE for the above statement using a simple code generation algorithm and tabulate your steps in appropriate rows and columns as shown below:

Statement(s)	Code Generated	Register Descriptor	Address Descriptor
			***,
		***************************************	

[5 M]

- B.7.) Break the following program into BASIC BLOCKS and Write them.
  - 1.  $i \leftarrow 1$
  - 2.  $j \leftarrow 1$
  - 3.  $t1 \leftarrow 10 * i$
  - 4.  $t2 \leftarrow t1+i$
  - 5.  $t3 \leftarrow 8 * t2$
  - 6. t4 ← t3 88
  - 7.  $a[t4] \leftarrow 0.0$
  - 8.  $j \leftarrow j + 1$
  - 9. if  $j \le 10$  goto 3
  - 10. i  $\leftarrow$  i + 1
  - 11. if i <= 10 goto 2
  - 12. i ← 1
  - 13.  $t5 \leftarrow i 1$
  - 14. t6 ← 88 * t5
  - 15.  $a[t6] \leftarrow 1.0$
  - 16.  $i \leftarrow i + 1$
  - 17. if  $i \le 10 \text{ goto } 13$

[6 M]

- **B.8**). Draw the layout of a typical STACK FRAME (ACTIVATION RECORD) for a function and briefly explain its contents. [6 M]
- **B.9.)** Using **LEX** and **YACC**, Check whether a given "SQL" command (read from input text file) entered by an user, is syntactically correct according to SQL Syntax. [i.e. you have to **write LEX source** program and **YACC source** program]. [5+5 M]

Consider **only one** POSTGRES SQL command whose *syntax* and *Test Scenario* are given below:

## **TRIGGER**

Syntax: create trigger name

before event on table

for each row

execute procedure func(arguments)

## **Test Scenario**

#### Input Data:

create trigger pres before insert on student for each row execute procedure myfunct ( idno )

wertyu

## **Output Result:**

create trigger pres before insert on student for each row execute procedure myfunct ( idno )

**Syntax Correct** 

wertyu

Syntax is wrong

## **TEST II Question Paper**

# BITS, Pilani – Dubai, Dubai International Academic City III Year SECOND SEMESTER 2009-2010

Degree: B.E. (Hons.) Branch: C.S.

Course No: CSUC362 Course Title: Programming Languages and Compiler Construction

Date: 02nd May, 2010 Sunday

Time: 50 minutes

Total marks: 40 (20% wt.)

Data provided are complete. **OPEN** Book. This qn paper has 2 pages.

Textbook, Reference Book and student's own handwritten class notes permitted.

Answer all Questions.

1.It is required to store various strings in a **Symbol Table**. Assume a HASH TABLE implementation for the Symbol Table and the hash function is defined as follows:

Read in a string and calculate its **hash value** using the hash function given below. You can permit collisions, in case if they occur [i.e. one or more strings can map to the same hash value; you can store them in the same sub-list corresponding to the computed hash value] Assume that the input string has *English alphabets* (upper case and lower case) and *digits*. Note the range of ASCII values for A-Z is 65-90, a-z is 97-122 and digits 0-9 is 48-57.

HASH FUNCTION for an input string is defined as follows:

#### HASH VALUE=

((sum of ASCII values of the English alphabets – sum of ASCII values of digits present in the string) * 10 + 4) MOD 10

Example: Input String: Az9

Hash Value =  $((65+122-57)*10+4) \mod 10=4$ 

Note: MOD denotes modulus operator [i.e. remainder after division]

Compute the hash values for each of the following input strings:

a) A2y b) D3x c) C4w d) E5v e) F2u f) B2t

**Draw** the layout of the Symbol Table showing its contents.

[6+2 M]

2. Construct the DAG (directed acyclic graph for higher level representation of intermediate code) for the following arithmetic expression:

$$a/(a+b) + c/(a+b) + d/(g+h) + j/(g+h)$$
 [4M]

3. Translate the following expression into *intermediate code* using STACK MANIPULATION (Ivalue, rvalue, push, pop, := etc) operations in an ABSTRACT STACK MACHINE:

$$a := (c + d) + (m * n) + (p * q) + 1$$

[4 M]

4. Why do you need SEMANTIC ANALYSIS and TYPE CHECKING actions in compiler design? [2 M]

#### Question paper second page

5. Translate the following program segment into Three Address Code (Quadruples):

begin while ( 
$$i < 12$$
)
begin
$$k = k + 4$$

$$j = k + 2$$

$$i = i + 1$$
end
$$j = j + 2$$
end

Assume that i,j,k are all integers whose initial values are zero.

[4 marks]

6. Consider the following syntax directed definition for a desk calculator program:

PRODUCTION	SEMANTIC RULES
$L \rightarrow E n$	print(E.val)
$E \rightarrow E_I + T$	$E.\text{val} = E_1.\text{val} + T.\text{val}$
$E \rightarrow T$	E.val=T.val
$T \rightarrow T_I * F$	$T.\text{val}=T_1.\text{val} * F.\text{val}$
$T \rightarrow F$	T.val=F.val
$F \rightarrow (E)$	F.val=E.val
$F \rightarrow digit$	F.val=digit.lexval

Here n denotes newline.

Construct an *annotated* PARSE TREE for the following input expression:

$$(6*2 + 5*3 + 4*4)$$
 n

[6 M]

7. Find the NULLABLE, FIRST and FOLLOW sets for the following CFG and then Construct the PREDICTIVE PARSING TABLE: (3+3+1+5 M)

```
\rightarrow coll
query
coll
                 \rightarrow sfw
          → SELECT opt_distinct proj list FROM from item list opt where
                 → DISTINCT
opt distinct
                 → * | proj item list
proj list
proj_item_list \rightarrow id1
from item list \rightarrow id2
opt where
                 \rightarrow \epsilon | WHERE expr rel expr
expr
                 \rightarrow id3 | id4
                 →=|<|>
rel
```

Note: Here, € indicates null



## **TEST I Question Paper**

BITS, Pilani – Dubai, Dubai International Academic City III Year SECOND SEMESTER 2009-2010

Degree: B.E. (Hons.) Branch: C.S.

Course No: CS C362 Course Title: Programming Languages and

**Compiler Construction** 

Date: 21 Mar., 2010 Sunday Time: 50 minutes Total marks: 50 Weightage: 25% Data provided are complete. Closed Book. This qn paper has 3 pages.

Answer all Questions.

```
1. Write the OUTPUT of the following C Program: [10 M]
/* Parameter Passing */
#include <stdio.h>
main ()
  void e (int xy, int *nq);
  int x[10], i;
  int n = 11;
  for (i = 0; i < 10; i += 1)
    x[i] = 2;
  for (i = 1; i \le 10; i += 1)
      n = n - 1;
      e(x[i-1], \&n);
}
void
e (int xy, int *nq)
  int m, p, z;
  m = *nq;
  p = 1;
  z = xy;
  while (m > 0)
      while (!(m % 2))
       m /= 2;
       Z *= Z;
      m--;
      p *= z;
 printf (" p = %d \n", p + 2);
```

#### CS C362 PLCC QN PAPER PG 2 of 3

2. Write a SWI-PROLOG program to implement the following RECURRENCE RELATION; Assume that n is >= 0.

T(n) =

- $3n^2 + 2n + 10$ , for n=0,1 or 2
- T(n-1) + 2T(n-2) + T(n-3) for n > 2.

Write the output for the following queries/goals:

i) t(3,X).

ii). t(4,Y).

[7+3 M]

- 3. Write a JAVA program involving *Class Inheritance* for a simple academic application as specified below: [10 M]
- Create a base class **Info** that can store the following attributes of type string [i.e. data items] **weblink** (i.e. the URL), **filename**. This class can contain a *constructor* to set the values for the attributes **weblink** and **filename**. This class contains another *method* to display the **weblink** and **filename**.
- Create a derived class **Academic** that extends the base class. This class can store an attribute **categorycode** of type integer. (Assume that the *categorycode* can have a value 1 or 2 or 3 when an object is created). This class can contain a constructor to set the values for **weblink**, **filename** and **categorycode**. This class contains another *method* to display the **weblink**, **filename**, **categorycode**. It also prints **one** of the following *messages* according to the value of **categorycode**:

If categorycode=1, it displays the message, "Higher Education".

If categorycode=2, it displays the message, "Professional Body".

If categorycode=3, it displays the message, "Symposium".

-Create a Class **Inheritance_Testing**. This class can store the **main** function. Now you create the following three objects for the class **Academic**:

www.bitsdubai.com plcc1.txt 1

www.ieee.org sl

s12.xml 2

www.nitt.edu

vortex.txt 3

Now print all these objects along with their appropriate messages.

4. What are the functions of Semantic Analyzer & Symbol T	able in a compiler ? [2+2 M]
5. Give an example for each of the following types of errors: LEXICAL ERROR SYNTAX ERROR SEMANTIC ERRO	[4 M] PR LOGICAL ERROR
<ul> <li>6. Represent the following sets by Regular Expressions, if at 2 5, 8 11</li> <li>i) { a , a , a , a , }</li> <li>[note: (a power n) denotes no of occurrences of a]</li> <li>ii) All strings of digits that contain no leading zeroes.</li> </ul>	
iii) All strings of digits that represent even numbers.	[2+2+2 M]
7. Explain the following operations on STRINGS and LANGU. of alphabets, upper and lower case) and D (set of digits):	AGES for the sets L (set
a) UNION b) KLEENE CLOSURE c) CONCATENATIO	N [2+2+2 M]

BITS, Pilani - Dubai, Academic City, Dubai. III Year Second Semester 2009-2010 Degree: B.E. Hons. Branch: C.S.

## **QUIZ II**

Course No: CS C362 Course Title: Prog. Lang. & Comp. Cons. Date: 19/4/10 Monday Time: 20 min. Total marks: 30 Venue: As per seating arrangement *Closed Book*. Weightage: 03% This question paper has 3 pages Data provided are complete

Use Back Page for rough work only (this back page will not be evaluated) Name:

IDNO:

Write answers in the space provided in question paper. Answer all questions.

1. Eliminate all left recursions and common prefixes (perform left factoring), if any, from the following grammars: [2+2 M]

> $N \rightarrow Nr \mid M$ a)

b)  $N \rightarrow rM \mid rs$ 

2. How does YACC handle REDUCE / REDUCE CONFLICT and SHIFT / REDUCE CONFLICT? [2M]

3. What is the meaning of each of the following regular expressions in LEX? 5*2= 10 M

x\$

х|у

x/y

 $x\{m,n\}$ 

BITS, Pilani – Dubai, Academic City, Dubai. III Year Second Semester 2009-2010 Degree: B.E. Hons. Branch: C.S.

#### **QUIZ II**

Course No: CS C362 Course Title: Prog. Lang. & Comp. Cons.
Date: 19/4/10 Monday Time: 20 min. Total marks: 30
Weightage: 03% Venue: As per seating arrangement Closed Book.
This question paper has 3 pages Data provided are complete
Use Back Page for rough work only (this back page will not be evaluated)

IDNO: Name:

BITS, Pilani – Dubai, Academic City, Dubai. III Year Second Semester 2009-2010 Degree: B.E. Hons, Branch: C.S.

## **QUIZ II**

Course No: CS C362 Course Title: Prog. Lang. & Comp. Cons.
Date: 19/4/10 Monday Time: 20 min. Total marks: 30
Weightage: 03% Venue: As per seating arrangement Closed Book.
This question paper has 3 pages Data provided are complete
Use Back Page for rough work only (this back page will not be evaluated)

IDNO: Name:

웅웅

```
5. a) Write the action of the following LEX Program in two sentences. [4 M]
%{
    #include <stdio.h>
    int n=1;
%}
%%
.*\n { printf("%d %s", n++, yytext); }
```

b) Assume that the input to your program [input is read from file using input redirection < symbol], is the following text, What will be the output of your program? [2 M] AAAAA BBBBB

6. What is the difference between LEFTMOST and RIGHTMOST DERIVATIONS? [2 M]

BITS, Pilani - Dubai, Academic City, Dubai. III Year Second Semester 2009-2010 Degree: B.E. Hons. Branch: C.S.

## **QUIZI**

Course No: CS C362 Date: 08/3/10 Monday

Time: 20 min.

Course Title: Prog. Lang. & Comp. Cons. Total marks: 16

Venue: As per seating arrangement Closed Book. Weightage: 08% This question paper has 2 pages Data provided are complete

Use Back Page for rough work only (this back page will not be evaluated)

**IDNO:** 

Name:

Write answers in the space provided in question paper. Answer all questions.

- 1. What are the main features of DECLARATIVE Programming paradigm? [2 M]
- 2. Mention any two main advantages of Virtual Machines.

[2M]

3. Write a PICO LISP program to implement the following RECURRENCE RELATION: (Assume that n is  $\geq 0$ ).

T(n) =

- $2n^2 + 2n + 1$ , for n=0,1.
- 3T(n-1) + 2T(n-2) for n > 1.

[3 M]

BITS, Pilani - Dubai, Academic City, Dubai. III Year Second Semester 2009-2010

Degree: B.E. Hons. Branch: C.S.

## **QUIZI**

Course No: CS C362 Course Title: Prog. Lang. & Comp. Cons. Date: 08/3/10 Monday Time: 20 min. Total marks: 16 Venue: As per seating arrangement Closed Book. Weightage: 08%

This question paper has 2 pages Data provided are complete

Use Back Page for rough work only (this back page will not be evaluated)

**IDNO:** Name:

4	α.	• •	4 CH . P				
/* c			the following P  */	'ICO LISP P	rogram:		
( de c			k)				
. (		-	( ( = n	k) 1	)		
·			( ( = k)	0) 1	)		
		(		comm( -	n 1) (-	k 1)	)
			(	comm(-	n 1)	k )	•
			)				
		)					
)							
) /*							,
,		anlt (					
code:	10	sun (	output) of eact	1 of the 10110	wing LISP	Expressi	ons for the above
INPUT			OUTPUT	7			
22.12.0.1			(write answer	• •			
			in this column				
			only)				
(comm	5	2)		7			
(comm	7	3)					
(comm	6	4)		7			
mpa.			P # / 10.00	<del>-1</del>			[3 M]
5. Librario	es c	f fun	ctions for Delay	ed Linking a	re stored in		rJ
				r LINUX OS			
				nd			
<del>-</del>			for	WINDOWS	OS.		[2 M]
o.iviention TIME.	ı an	y two	properties for E	SINDING du	iring LANG	UAGE II	MPLEMENTATION
HIVE.							[2 M]
7. In PICC	) Ll	SP. T	NTERNAL Svn	nbols are all	those "norn	jal" svmt	ools, as they are used
or		,		and will		Symit	on, as moy are used
				and		1771 74	.[2 M]
						****	-[- 111]