BITS, Pilani-Dubai Dubai International Academic City, Dubai

COMPREHENSIVE EXAMINATION -III YEAR -II SEMESTER 2009-2010

Date: 19/05/10 Course: Numerical Analysis AAOC C341

Duration: 3hours Total Marks: 120 Weight age: 40%

NOTE: ANSWER PART - A, PART - B AND PART - C SEPARATELY

PART - A

- 1. (a) For x = 3.4327 find the values of absolute and relative errors if:
 - i) x is truncated to three decimal places.
 - ii) x is rounded off to three decimal places. [4]
 - (b) Find a root of the equation $(2x+1)^2 = 4\cos\pi x$ at the end of 4th iteration in the interval $\left[\frac{1}{4}, \frac{1}{3}\right]$ using Bisection method with 5 digit arithmetic and rounding. [6]
- 2. (a) Find a root of the equation $f(x) = 4x^3 3x^2 + 2x 1$ by Muller's method starting with 0.5, 0.6, 0.7. Do one iteration using 5 digit arithmetic with rounding. [10]
 - (b) For $f(x)=x^3-3x+1$ defined in the interval [0,1] write all possible iterative functions g(x) and check the conditions of convergence of fixed point iteration theorem. Compute smallest positive root starting with $x_0 = 1$ using 5 digit arithmetic with rounding at the end of fourth iteration. [10]
- 3. (a) Find the determinant and inverse of the following matrix using Gauss Jordan method.

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{pmatrix}$$
[10]

(b) Use Gauss-Siedel Method to obtain the solution of the system of equations, starting with initial vector [0 0 0].

$$0.1x + 7y - 0.3z = -19.3$$

$$3x - 0.1y - 0.2z = 7.85$$

$$0.3x - 0.2y + 10z = 71.4$$

Do two iterations with 5 digit arithmetic with rounding.

[10]

- 1. (a) Estimate the area of the curve $3y = x^3$ in the interval [0,1] using Simpson's $\frac{1}{3}$ rule taking 4 subintervals. Use 5 digit arithmetic with rounding. [4]
 - (b) Using 4th order Runge-Kutta method solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$, with y(0) = 1 at x = 0.2. Use 5 digit arithmetic with rounding.
- 2. Solve $\frac{dy}{dx} = xy + x^2 1$ with y(1) = 0.649, y(1.1) = 0.731, y(1.2) = 0.854 and y(1.3) = 1.028 using Adam-Moulton predictor-corrector method at x = 1.4 using 5 digit arithmetic with rounding.
- 3. (a) Solve the following system of equations by Taylor's series of order 3 at t = 0.1 using 5 digit arithmetic with rounding.

$$\frac{dx}{dt} = xy + t, \ x(0) = 1$$

$$\frac{dy}{dt} = ty + x, \ y(0) = -1$$
[5]

(b) Solve the boundary value problem $y'' = xy' + x^2$ with y(1) = 1, y(3) = -1 using the set of equations by dividing into 4 subintervals. [5]

BITS, Pilani-Dubai Dubai International Academic City, Dubai Third year – Second semester 2009 – 2010

AAOC C341 – Numerical Analysis Test - 2 (Open Book)

Date: 08.04.2010 Time: 50 Minutes

Max. Marks: 60 Weightage: 20%

[12]

Answer ALL the Questions

1. If $f(x) = \frac{1}{x}$ whose arguments are a, b, c, d in this order prove that $f[a, b, c, d] = -\frac{1}{abcd}$ [6]

2. The population of a certain town is shown in the following table:

 Year
 : 1951
 1961
 1971
 1981
 1991

 Population
 : 40.62
 60.30
 79.95
 103.56
 132.65

Interpolate at x = 1955 and find the rate of growth in 1955.

3. Find the value of $\log 2^{\frac{1}{3}}$ from $\int_0^1 \frac{x^2}{1+x^3} dx$ using Trapezoidal rule with h=0.1

4. Fit a natural cubic spline curve and evaluate the spline value at x=5 for the following data using 6 digit arithmetic. [15]

_						
L	<i>x</i> :	2	3.5	6	7.5	10.5
	f(x):	12	24	13	15	23.5

5. Expand $\cos x$ in half-range sine series and $\sin x$ in half cosine series over the interval $(0, \pi)$. [15]

BITS, Pilani-Dubai Dubai International Academic City, Dubai Third year – Second semester 2009 – 2010

AAOC C341 – Numerical Analysis Test - 1 (Closed Book)

Date: 21.02.2010 Time: 50 Minutes Max. Marks: 75 Weightage: 25%

Answer ALL the Questions

1. Evaluate the cubic polynomial

 $f(x) = 1.107 x^3 + 0.319 x^2 - 0.017 x + 0.171$ at x = 0.123 using five digit arithmetic with rounding in nested form. Also find the relative error. (10)

- 2. The quadratic f(x) = (x-0.3)(x-0.5) obviously has zeros at 0.3 and 0.5.
 - a) Why is the interval [0.1, 0.6] not a satisfactory starting interval for bisection method?
 - b) If you start with [0, 0.49] which root is reached.
 - c) Also find the root in the interval [0, 0.49] at the end of fifth iteration by Bisection method using 5 digit arithmetic with rounding. (13)
- 3. Find a root of the equation $e^x 2 x = 0$ with the starting values -2.4 and -1.6 at the end of fourth iteration by Regula Falsi method using 5 significant digits with rounding. (13)
- 4. Using Newton's method, find the cube root of 31 correcting to 5 digit arithmetic with rounding starting with $x_0 = 3$. (13)
- 5. Find a root of the nonlinear equation $f(x) = \tan(x) + 3x^2 1$ with the values 0.5, 0.8, 1.0. at the end of first iteration by Muller's method using 5 digit arithmetic. (13)
- 6. Find a suitable interval [a, b] and any four different iteration functions g(x) for $f(x) = e^{x-1} x^3 + 2x = 0$ by fixed point method. (13)

Good Luck

BITS, Pilani-Dubai, Dubai International Academic City, Dubai III YEAR II SEMESTER 2009-10 QUIZ – 2 (Closed Book)

Course Titl Date: 26.04	is	Max marks: 21			Course No: AAOC C341 Weight age: 7%							
Name of the	e Stude	ent:					_					
ID No:				<u>_</u>								
1. Usin	g Simp	son's $\frac{3}{8}$	rule fi	nd the v	elocity	after 18	second	ls if a ro	ocket h	as accel	eration	as
giver	ı below											
	x:	0	2	4	6	8 80	10	12	14	16.	18	
	<i>y</i> :	40	60	70	75	80	83	85	87	88	88	
Use f	ive digi	it arithn	netic wi	th roun	ding.						4	[5]

2. Evaluate $\int_{-1}^{1} \frac{x \sin x}{1 + x^2} dx$ using 3 point Gaussian quadrature with five digit arithmetic.

[5]

3. Find y at x = 2.1 for $\frac{dy}{dx} = x^2 + y^2$, y(2) = 3 using second order Taylor's series with 5 digit arithmetic. [5]

4. Solve $y' = \sin x + y$, y(0) = 2 by the modified Euler's method to get y(0.1) using 5 digit arithmetic with rounding. [6]

BITS, Pilani-Dubai Dubai International Academic City, Dubai Third year – Second semester 2009 – 2010 Numerical Analysis (AAOC C341)

Α

Quiz - 1

Time: 25 Minutes

Max Marks: 24

Weightage: 8%

Name:

ID:

15.3.2010

Answer ALL the Questions

1. (a) Do one iteration of Newton's method correct to 5 digits to obtain the double root of the cubic polynomial $f(x) = x^3 - 3x + 2$ which is close to 1.2. (4)

(b) State the Newton's iteration formula to find the solution of the system of non-linear equations? (2)

2. Solve the system of linear equations using Gauss elimination method using 5 digit arithmetic (without scaling and partial pivoting) and hence find the determinant of the coefficient matrix: (6)

$$6x + 3y + z = 12$$
$$x + 5y + 2z = 3$$
$$2x + 4y + 7z = 21$$

3. Write a brief note on (a) Scaling (b) III-conditioned system (c) find 1- norm, ∞ - norm

and Frobenius norm for the following matrix
$$A = \begin{pmatrix} 3 & 5 & 2 \\ 2 & -4 & -2 \\ 10 & 5 & 1 \end{pmatrix}$$
 (6)

Find the minimum number of iterations required in Jacobi method to solve the system of linear equations correcting to 5 arithmetic digits with rounding. Assume the initial vector as (1, -1, 1).

$$4x - 10y + 5z = 32$$

$$5x - 4y + 10z = 39$$

$$10x + 5y - 4z = 17$$