BITS, Pilani-Dubai Dubai International Academic City, Dubai

COMPREHENSIVE EXAMINATION -III YEAR -II SEMESTER 2008-2009

Date: 31/05/09

Course: Numerical Analysis AAOC C341

Duration: 3hours

Total Marks: 40

NOTE: ANSWER PART – A AND PART – B SEPARATELY PART – A

Q1

- (a) Evaluate $f(x)=1.107x^3+0.319x^2-0.017x+1.107$ for x=0.123 in nested form using 4 digit arithmetic with rounding. [1]
- (b) Find a suitable iteration function g(x) in the interval I and check the conditions of convergence of fixed point iteration theorem for the function $x^3 x 1 = 0$. Further, compute smallest positive root using 5 digit arithmetic with rounding at the end of fifth iteration and find the minimum number of iterations required so that the root is correct to 4 decimal places. [3]

Q2

- (a) Find a root of the equation $f(x) = x \sin x + \cos x$ by Newton's method in three iterations starting with $x = \pi$ using 5 digit arithmetic with rounding.
- (b) Find a root of the equation $f(x) = 3x + \sin x e^x$ by Muller's method starting with $x_0 = 0.5$, $x_1 = 1$ and $x_2 = 0$. Do two iterations using 6 digit arithmetic with rounding. [3]

Q3

(a) Find the determinant and inverse of the following matrix by Gauss elimination method using scaling, partial pivoting and 4 digit arithmetic with rounding:

$$A = \begin{pmatrix} 4 & -10 & 5 \\ 5 & -4 & 10 \\ 10 & 5 & -4 \end{pmatrix}$$
 [4]

(b) Solve the following system of equations by Gauss Seidel method starting with the root (1, 1, 1).

$$3x-6y+2z = 23$$
$$-4x+y-z = -15$$
$$x-3y+7z = 16$$

Do 2 iterations using 5 digit arithmetic with rounding.

[2]

Q4

(a) Find f(-0.5) by Newton's interpolation method for the following data using 5 digit arithmetic with rounding:

$$x: -1$$
 0 1 2 3
 $f(x): 10$ 2 0 10 62 [2]

(b)	Fit a	ı natural	cubic	spline	curve	and	evaluate	the	spline	value	at	x = 1.5 for	the
	follo	wing da	ta with	ı 5 digi	t arithr	netic	: .		_				[3]
		1		^	•		4						

$$x: 1 2 3 4$$

 $f(x): 1 5 11 8$

PART - B

Q5

- (a) Express $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$ in terms of Chebyshev polynomial using 5 digit arithmetic. [2]
- (b) Find the largest eigen value and the corresponding eigen vector of the $\max \begin{pmatrix} 3 & -1 & 0 \\ -2 & 4 & -3 \\ 0 & -1 & 1 \end{pmatrix}$. Do four iterations using 5 digit arithmetic with rounding.

Q6

- (a) Derive the formula for Fourier series approximation and the Fourier coefficients of a periodic function f(x) defined in $(-\pi, \pi)$. [3]
- (b) Find y'''(2.0) from the following data using 5 digit arithmetic with rounding. [1] x: 2.0 2.1 2.2 2.3 y: 0.12306 0.10571 0.089584 0.074764

Q7

- (a) Evaluate $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$ by dividing the interval into four equal parts in both the direction using Trapezoidal rule with 5 digit arithmetic. [3]
- (b) Compute y(0.1) by Runge-Kutta method of order 4 for the differential equation $\frac{dy}{dx} = 2x^2 y, \ y(0) = -1 \text{ with five digit arithmetic.}$ [3]

Q8

- (a) Obtain the value of y(0.3) by Taylor's series method of order 3 and hence find y(0.4) by Adams-Moulton predictor corrector method for the equation $\frac{dy}{dx} = -2x y, \ y(0) = -1, y(0.1) = -0.91451 \text{ and } y(0.2) = -0.85619 \text{ using 5 digit arithmetic with rounding.}$
- (b) Solve the following boundary value problem by finite difference method: u'' = u, u(1) = 1.17520, u(3) = 10.01787 with h = 0.5 using 5 digit arithmetic. [2]

BITS, Pilani-Dubai Dubai International Academic City, Dubai III Year – Second Semester 2008-2009

Test: II (OB) Course: Numerical Analysis - AAOC C341

Date: 19.04.09 Duration: 50 min
Total Marks: 20 Weightage: 20

Answer ALL Questions

1. By using the Lagrange's interpolation formula find f(9) from the following data using 5 digit arithmetic with rounding.

x: 5 7 11 13 17 [2] f(x): 150 392 1452 2366 5202

- 2. When x = 0 to 4, the first five terms of a sequence are 2, 7, 16, 35, 70. Using Newton's interpolation find the general term of the sequence and hence find the tenth term?
- 3. Fit a natural cubic spline curve and evaluate the spline value and the derivative at $x = \frac{\pi}{6}$ for the following data using 5 digit arithmetic with rounding.

 $x: 0 \frac{\pi}{2} \pi$ f(x): 0 1 0 [4]

- 4. Expand $\cos x$ in half-range sine series and $\sin x$ in half cosine series over the interval $(0, \pi)$.
- 5. Evaluate $\int_{0}^{1} \frac{x^2}{1+x^3} dx$ with four intervals using Simpson's one third rule and hence evaluate $\log_e 2$ using 5 digit arithmetic with rounding. [3]
- 6. Find A, x_1, B so that the following integration rule is exact for a polynomial of degree as high as possible. Also write all possible formulas.

$$\int_{-1}^{1} x f(x) dx = Af(1) + \frac{2}{3} f(x_1) + Bf(-1)$$
 [4]

BITS, Pilani-Dubai Dubai International Academic City, Dubai III Year – Second Semester 2008-2009

Test: I (CB) Course: Numerical Analysis – AAOC C341

Date: 09.03.09 Duration: 50 min Total Marks: 25 Weightage: 25

Answer ALL Questions

1. (a) Evaluate the cubic polynomial $x^3 - 3.966x^2 + 5.2431x - 2.3105$ using five digit arithmetic with rounding in nested form at x = 1.372. [3]

(b) List five different types of errors and describe each of them. [2]

2. Do five iterations of Bisection method using five digit arithmetic with rounding to find the point of intersection of the curves $y = \cos x$ and $y = x^3 - 1$ in the interval (0, 2).

3. Find a root of the equation $f(x) = x^3 - 3x + 1 = 0$ by Regula Falsi method starting with a = 0, b = 0.5. Do two iterations using five digit arithmetic with rounding.

4. Find a root of the equation $x^2 + e^x = 5$ by Muller's method starting with the values 1, -0.5, -2 using five digit arithmetic with rounding. Do one iteration and what would be the starting interval for the next iteration. [4]

5. Do three iterations of Newton's method to obtain the double root of $x^3 - 2x^2 - 0.75x + 2.25 = 0$ which is close to 1, using five digit arithmetic with rounding. [4]

6. The following are three different rearrangement functions g(x) of the same function f(x). What is f(x) and which of these converge? [4]

(i)
$$\frac{4+2x^3}{x^2}-2x$$

(ii)
$$\sqrt{\frac{4}{x}}$$

(iii)
$$\frac{16+x^3}{5x^2}$$

BITS, Pilani-Dubai, Dubai International Academic City, Dubai III YEAR II SEMESTER 2008-09 QUIZ – 3 (Closed Book)

Course Title: Numerical Analysis

Date: 23.04.2009

Name of the Student:

ID No:

Find $y(1.1) \perp y(1.2)$ for the differential equation $\frac{dy}{dt} = y^2 + \xi^2$ given y(1) = -1 which y(1) =

BITS, Pilani-Dubai, Dubai International Academic City, Dubai III YEAR II SEMESTER 2008-09 QUIZ – 2 (Closed Book)

Course Title: Numerical Analysis	Course No: AAOC C341				
Date: 16.03.2009	Max marks: 5				
Name of the Student:	·				
ID No:					

Solve the following system of equations using Gauss Seidel iterative method starting with (1,1,1). Do three iterations using 5 digit arithmetic.

$$3x_1 - 6x_2 + 2x_3 = 23$$
$$-4x_1 + x_2 - x_3 = -15$$
$$x_1 - 3x_2 + 7x_3 = 16$$

BITS, Pilani-Dubai, Dubai International Academic City, Dubai III YEAR II SEMESTER 2008-09 QUIZ – 1 (Closed Book)

Course Title: Numerical Analysis Date: 24.02.2009	Course No: AAOC C341 Max marks: 5				
Name of the Student:					
ID No:					
Solve the following equations using 5 decimal d	igits approximation starting with $(1, -1.7)$ by				
Newton's method.					
$x^2 + y^2 = 4$; $e^x + y = 1$					