BITS, Pilani - Dubai. International Academic City, Dubai

III Year SECOND Semester 2007-2008
Degree: B.E.(Hons.). Branch: C.S.
Comprehensive Examination Question Paper
Course No : CSUC 362 Course Title: Programming Languages and Compiler Construction
Date: 24/05/08 Saturday Time: 10 a.m.- 1 Noon Total marks: 80 Weightage: 40%
Data provided are complete. Closed Book.
This question paper has 5 pages.
Answer all Questions

1. Find the NULLABLE, FIRST and FOLLOW sets for the following CFG and then Construct the PREDICTIVE PARSING TABLE: ($1+2.5+2.5+4$ marks)
(Note: here $\boldsymbol{\epsilon}$ denotes null)

$$
\begin{array}{lll}
S \rightarrow E \mathbb{S}, & \\
E \rightarrow T E & T \rightarrow F T & F \rightarrow \text { id } \\
E \rightarrow+T E & T^{\prime} \rightarrow * F T^{\prime} & F \rightarrow \text { num } \\
E \rightarrow-T E & T \rightarrow / F T & F \rightarrow(E) \\
E \rightarrow \mathbf{E} & T \rightarrow \mathbf{\epsilon} &
\end{array}
$$

2. Write a JAVA program to generate and find the SUM of the following series:
(7 marks)
SUM $=1-2-3+4+5+6-7-8-9-10+\ldots N$ th term (You can read the input value for N either through command line argument or through keyboard). See the following example scenario:

INPUT	OUTPUT
----------1	
2	-1
3	-4
4	0
5	5
10	-23

3. Consider a simple assignment statement:

$$
d:=(a+20)+(a-4)+(d+c)
$$

You are required to generate CODE for the above statement using a simple code generation algorithm and tabulate your steps as shown below:

| Statements | Code Generated | Register Descriptor | Address Descriptor |
| ---: | :---: | :---: | :---: | :---: |
| $\ldots \ldots \ldots \ldots \ldots \ldots$ | $\ldots .$. | $\ldots \ldots$ | $\ldots \ldots$ |

[5 marks]
4. You are required to write LEX SOURCE and YACC SOURCE to implement a four function calculator that performs addition, subtraction, multiplication and division on input NUMBERS. Assume that the NUMBERS are

positive INTEGERS

or
positive REAL NUMBERS with 2 digits after decimal point.

Example	INPUT	OUTPUT	
	$14.26+26.14$	40.40	
	$(14.26+26.14)$	40.40	
	$(14+14.20)$	28.20	
	$(14.5+2)$	16.5	
	$(14+14)$	28.00	

5. Explain in detail the mark-and-sweep garbage collection algorithm. [5 marks]
6. Write a PICO LISP program to implement the following function using recursion

$$
a_{n}=\left(3 * a_{n-}\right)+2 \text { with } a_{0}=5 \text { and } \mathbf{n} \text { is a positive integer }
$$

7. Write a SWI-PROLOG program to implement the following function using recursion

$$
a_{n}=\left(2 * a_{n-}\right)+n+1 \text { with } a_{0}=5 \text { and } n \text { is a positive integer. }
$$

```
8. Write the output generated by the following JAVA program
// program T.java
public class T
    public static void main|(String[]args)
int[][] t = new int[1d][];
for (int i = 0; i < t.length; i++
        t[i] = new int[i + 1];
for (int i = 0; i < t.hength; i++
        for (int j = 0; j < ti[i].length; j++
                System.out.print (2 * i + t[i][j] + 3 * );
                System.out.print|('\t');
        System.out.println
```

9. Break the following program into BASIC BLOCKS and Write them.
10. $\mathrm{m} \leftarrow 0$
11. $\mathrm{v} \leftarrow 0$
12. if $\mathrm{v}>=\mathrm{n}$ goto 15
13. $r \leftarrow v$
14. $\mathrm{s} \leftarrow 0$
15. if $\mathrm{r}<\mathrm{n}$ goto 9
16. $\mathrm{v} \leftarrow \mathrm{v}+3$
17. goto 3
18. $\mathrm{x} \leftarrow \mathrm{M}[\mathrm{r}]$
19. $\mathrm{s} \leftarrow \mathrm{s}+\mathrm{x}$
20. if $s<=m$ goto 13
21. $\mathrm{m} \leftarrow \mathrm{s}$
22. $\mathrm{r} \leftarrow \mathrm{r}+6$
23. goto 6
24. return m
25. Write a LEX program [source] to check the output for an Exclusive OR GATE with 2 input values. Your program should handle correct as well as incorrect inputs. [5 marks]
(Test Case shown below will give you an idea about legal/illegal inputs and the expected output, during your program execution. It is just enough if you write the LEX source alone.)

INPUT:
00
01
10
11
A B
A
92
9 D
OUTPUT:
0
1
1
0
invalid input
invalid input
invalid input
invalid input
11. Draw the layout of a typical STACK FRAME (ACTIVATION RECORD) for a function and briefly explain its contents. [5 marks]

```
12. Write the output generated by the following C program: ( 5 marks )
\#include <stdio.h>
main ()
1
    voide (int *we, int *gg),
    int \(\mathrm{x}[10]\), i ;
    int \(\mathrm{n}=2\);
    for \((i=0 ; i<10 ; i+=1\)
            \(x[i]=2 * n ;\)
            e (\&x[i], \&n);
            \(\mathrm{n}=\mathrm{n} * 2+2 ;\)
void
e (int *we, int *gg)
\{
    int m, z ;
    \(\mathrm{m}=\) *we * 2;
    \(\mathrm{z}={ }^{*} \mathrm{gg}\) * \(2+2\) * \(\mathrm{m}_{\mathrm{i}}\)
    m \(+=\) z;
    printf (" \(z=8 d m=8 d \ln |\|| z, m)\);
```

13. Explain the basic principles w.r.t. LIVENESS ANALYSIS. [5 marks]
14. Explain REDUCTION IN STRENGTH w.r.t CODE OPTIMIZATION with an
example.
15. What is an Interference Graph w.r.t. Register Allocation. [2 marks]
16. What are the advantages of DELAYED LINKING w.r.t. Language Systems?
[2 marks]
17. Define FLOW OF CONTROL CHECKS and UNIQUENESS CHECKS in TYPE CHECKING. Mention an example in each category. [2 marks]
18. Briefly explain the following w.r.t. Intermediate Representation tree: a) $\operatorname{Mem}(e)$
b) $\operatorname{ESEQ}(s, e)$
[2marks]

BITS, Pilani - Dubai, Dubai International Academic City III Year SECOND SEMESTER 2007-2008
 Degree: B.E. (Hons.) Branch: C.S.
 TEST II Question Paper

Course No : CSUC362 Course Title: Programming Languages and Compiler Construction
Date: 10 Apr., 2008 Thursday Time: 50 minutes Total marks: 20
Data provided are complete. OPEN Book. This qn paper has 2 pages.
Textbook, Reference Book and student's own handwritten class notes permitted.
Answer all Questions.

1. It is required to store all PRIME NUMBERS between 1 and 50
in a Symbol Table. Assume a HASH TABLE implementation for the Symbol
Table and the hash function is defined as follows:
" Hash Value = (INPUT PRIME NUMBER) \% 7 ". Here, \% means modulus (remainder after division). This hash value will be the position at which the input prime number will be inserted.
Draw the layout of the Symbol Table showing its contents.
[3 M]
2. Complete the following statement:

The SEMANTIC ANALYZER uses \qquad
to check the source program for semantic
consistency with language definition.
[1 M]
3 Construct the DAG (directed acyclic graph for higher level representation of intermediate code) for the following arithmetic expression:

$$
\mathbf{a}^{*}(\mathbf{a}+\mathbf{b})+\mathbf{c}^{*}(\mathbf{a}+\mathbf{b})+\mathbf{d}^{*}(\mathrm{~g}+\mathbf{h})+\mathbf{j} *(g+\mathbf{h})
$$

4. Translate the following program segment into Three Address Code (Quadraples):
```
begin
        while ( \(\mathrm{i}<=10\) )
            begin
            \(\mathrm{k}=\mathrm{k}+1\)
            \(\mathrm{j}=\mathrm{k}+\mathrm{j}\)
            \(\mathrm{i}=\mathrm{i}+1\)
        end
            \(\mathrm{j}=\mathrm{j}+10\)
    end
```

Assume that i, j, k are all integers whose initial values are zero.

$L \rightarrow E \mathrm{n}$	print(E.val)
$E \rightarrow E_{I}+T$	$E . \mathrm{val}=E_{1} . \mathrm{val}+T . \mathrm{val}$
$E \rightarrow T$	E.val $=T . \mathrm{val}$
$T \rightarrow T_{I} * F$	T.val $=T_{1} . \mathrm{val}$ * $F . \mathrm{val}$
$T \rightarrow F$	T.val $=F . \mathrm{val}$
$F \rightarrow(E)$	F.val $=$ E.val
$F \rightarrow$ digit	F.val $=$ digit.lexval

Construct an annotated PARSE TREE for the following input expression:

$$
\begin{equation*}
(4 * 7+1) * 2 \tag{2.5M}
\end{equation*}
$$

6. Find the NULLABLE, FIRST and FOLLOW sets for the following CFG and then Construct the PREDICTIVE PARSING TABLE: ($1+2+2+3$ marks)

$$
\begin{aligned}
& X \rightarrow S \$ \\
& S \rightarrow \text { id }(L) ; \\
& S \rightarrow \text { if }(E) S \text { else } S \\
& L \rightarrow \mathbf{\epsilon} \\
& L \rightarrow E C \\
& C \rightarrow \mathbf{\epsilon} \\
& C \rightarrow, E C \\
& E \rightarrow \text { id } \\
& E \rightarrow \text { num }
\end{aligned}
$$

Note: Here, $\boldsymbol{\epsilon}$ indicates null and \$ indicates END OF INPUT.
7. Show the steps in evaluating the following expression in an ABSTRACT STACK MACHINE:

$$
\begin{equation*}
\mathrm{a}:=(\mathrm{c} * \mathrm{~d})+(2 * d+2) \tag{1.5M}
\end{equation*}
$$

```
            BITS, Pilani - Dubai, Dubai International Academic City
        III Year SECOND SEMESTER 2007-2008
            Degree: B.E. (Hons.) Branch: C.S.
            TEST I Question Paper
Course No : CSUC362 Course Title: Programming Languages and Compiler Construction Time: 50 minutes Total marks: 20
Date: 24 Feb., 2008 Sunday Data provided are complete. Closed Book. This gn paper has 2 pages.
```


Answer all Questions.

```
1. Write the OUTPUT of the following C Program: [4.5 marks]
```

```
#include <stdio.h>
```

\#include <stdio.h>
main ()
{
void e (int xx, *nn, int j);
int x[9], i;
int y[9];
int n = 7;
for (i = 8; i >= 0; -= 1)
x[i] = 1 + (2 * n);
y[8 - i] = 2 * x[i] + 3;
e (x[i], \&n, y[8 - i]);
}
}
void
e (int xx, *nn, int j)
{
int m, z;
m = *nn + 1;
z = xx + 1;
*nn = (*nn * 2) + 1;
printf (" m= %d z= %d j = %d \n", z, j);

```
2. Distinguish between Internal Symbols and External Symbols in PICO-LISP. [2 marks]
[P.T.O.]
3. Consider the following LISP Program:
```

(de a(n)
(if (= n 1)
2
(- (* n (+ 3 (a(-n 1)))) 2)
))

```

Write the result (output) of each of the following LISP Expressions for the above code:
i) (a 4)
ii) (a 2)
iii) (a 1)
iv) (a 3)
v) (a 0
vi) (a 5)
[3 marks]
4. Use the following information and Construct a simple database of relationships in SWI-PROLOG:
[ 3 marks ]
Diet is related to people's priorities. Elderly people concerned about their blood-pressure often avoid fats.

Athletes, who are concerned with energy and body-building, eat sugar and proteins. For similar reasons, growing children are given these foods.

Overweight people who want to lose weight avoid sugar and facts.
5. Write a SWI-PROLOG program to find the total of the following series:
\[
1+1 / 2+1 / 3+1 / 4+1 / 5+\ldots \ldots \ldots \ldots+1 / \mathrm{N}
\]

A sample execution scenario (after successful compilation of your program) is shown below:
?- series(4,Total). (This is the input typed by you) Total \(=2.08333 \quad\) (This is the output of your program)
[2.5 marks]
6. Explain DELAYED LINKING with respect to
a) UNIX
b) JAVA
[3 marks]
7. Distinguish between a PROCEDURAL LANGUAGE and OBJECT-ORIENTED LANGUAGE.```

