BITS-Pilani Dubai, International Academic City, Dubai

Second Semester, Academic Year 2007-2008
Evaluation Component : Comprehensive Examination (Closed Book)
EEE UC35 ELECTROMAGNETIC FILEDS AND WAVES 433

Max. Marks: 90
Date: $1^{\text {st }}$ June, 2008
Weightage: 40\%
Note: 1. ANSWER ALL QUESTIONS and ANSWER only to specific point being questioned;
2. Make assumptions, if any, but explicitly indicate the assumptions made;
3. "ay" represent unit vector in direction of the axis (y -axis here) in the specific coordinate system employed.
4. Students will be provided Graph sheets / Smith Charts, as may be required.
1)
a) Four 10 nC positive charges are located in the $\mathrm{z}=0$ plane at the corners of a square 8 cm on a side. A fifth 10 nC positive charge is located at a point 8 cm distant from the other charges. Calculate the magnitude of the total force on this fifth charge for $\varepsilon=\varepsilon_{0}$.
b) A uniform line charge of $16 \mathrm{nC} / \mathrm{m}$ is located along the line defined by $y=-2$. $z=5$. If $\varepsilon=\varepsilon_{0}$: find (i) E at point $\mathrm{P}(1,2,3)$; (ii) E at that point in the $\mathrm{z}=0$ plane where the direction of E is given by (1/3) $\mathbf{a}_{y}-(2 / 3) \mathbf{a}_{z}$.
($2+3=5.0 \mathrm{M}$)
c) Find \mathbf{E} at the origin if the following charge distributions are present in free space: point charge, 12 nC at $\mathrm{P}(2,0,6)$; uniform line charge density, $3 \mathrm{nC} / \mathrm{m}$ at $\mathrm{x}=-2, \mathrm{y}=-3$; uniform surface charge density, $0.2 \mathrm{nC} / \mathrm{m}^{2}$ at $\mathrm{x}=2$.
(2.0M)
2)
a) An empty metal paint can is placed on a marble table, the lid is removed, and both parts are discharged (honorably) by touching them to ground. An insulating nylon thread is glued to the center of the lid, and a penny, a nickel and a dime are glued to the thread so that they are not touching each other. The penny is given a charge of +5 nC , and the nickel and dime are discharged. The assembly is lowered into the can so that the coins hang clear of all walls, and the lid is secured. The outside of the can is again touched momentarily to ground. The device is carefully disassembled with insulating gloves and tools. (i) what charges are found on each of the five metallic pieces? (ii) If the penny had been given a charge of +5 nC , the dime a charge of -2 nC , and the nickel a charge of -1 nC , what would be the final charge arrangement have been?
$(2+3=5.0 \mathrm{M})$
b) If a point charge Q lies at the origin, show that $\operatorname{div} \mathbf{D}$ is zero everywhere except at the origin. Replace the point charge with a uniform volume charge density $\rho_{\mathrm{v} 0}$ for $0<\mathrm{r}<\mathrm{a}$. Relate $\rho_{\mathrm{v} 0}$ to "Q" and "a" so that the total charge is the same. Find div D everywhere.
($3+2+2=7.0 \mathrm{M}$)
3) A potential field in free space is expressed as $V=20 /(x y z)$ volts. Find the total energy stored within the cube $1<x, y, z<2$. What value would be obtained by assuming a uniform energy density equal to the value at the center of the cube?
$(4+2=6.0 \mathrm{M})$
4)
a) Determine the energy stored per unit length in the internal magnetic field of an infinitely long, straight wire of radius " a ", carrying uniform current I .
b) Under some conditions, it is possible to approximate the effects of ferromagnetic materials by assuming linearity in the relationship of \mathbf{B} and \mathbf{H}. Let $\mu_{r}=1000$ for certain material of which a cylindrical wire of radius 1 mm made. If $\mathrm{I}=1 \mathrm{~A}$ and the current distribution is uniform, find (i) \mathbf{B}; (ii) \mathbf{H}; (iii) \mathbf{M}; (iv) \mathbf{J} and (v) \mathbf{J} within the wire, \mathbf{J}_{b}.
(10.0 M)
5)
a) Represent Transmission line as a four-terminal network and define each component of the representation. Starting from fundamentals, derive Transmission line wave equation and obtain an expression for the characteristic impedance of the line.
$(1+2+3=6.0 \mathrm{M})$
b) A transmission line having primary constants L, C, R and G has length "l" and is terminated by a load having complex impedance $R_{L}+j X_{L}$. At the input end of the line, a dc voltage source, Vo is connected. Asuming all parameters are known at zero frequency, find the steady-state power dissipated by the load if (i) $R=G=0$; (ii) R not equal to zero, $G=0$; (iii) $R=0, G$ not equal to zero; and (iv) R and G both not equal to zero. $\quad \begin{aligned} & (1+1.5+1.5+2=6.0 \mathrm{M})\end{aligned}$
a) A uniform $100-\Omega$ transmission line is terminated in a resistive load of 500Ω. Use a shorted stub to match this load to the line. By employing Smith chart find (i) Distance d_{1} from the load to stub; (ii) Distance or length d_{2} of the stub; (iii)VSWR on d_{1} line, and (iv)VSWR on stub
b) A 2-wire line constructed of lossless wire of circular cross section is (4.0 M) coupling loop that looks like a egg beater. At the cross section is gradually flared into a below, a short circuit is placed across the line. A proboint X, indicated by the arrow in figure the first voltage minimum to the left of X is 16 cm moved along the line and indicates that voltage minimum is found 5 cm to the left of X from X. With the short circuit removed, a times the voltage of the minimum. Use Smith chand a voltage maximum is located that is 3 (ii)VSWR, s and (iii) the normalized input impedance determine (i) the operating frequency right at point X.
(6.0 M)
7)

a) A plane 100 MHz wave is incident normally on a solid ferrite-titanate slab of thickness $\mathrm{d}=10 \mathrm{~mm}$ for which $\mu_{\mathrm{r}}=\varepsilon_{\mathrm{r}}=60(2-\mathrm{j} 1)$. The medium, which is non-conducting, is backed by a flat conducting sheet. How much is the reflected wave attenuated, in dB , with respect to incident
wave?
b) What is the polarization state of the reflected wave if a right circularly polarized wave is incident at an angle of 45° from air onto (i) a perfect conductor; (ii) polysterene $\left(\varepsilon_{\mathrm{r}}=2.7\right)$.
$(2+3=5.0 \mathrm{M})$
a) Define the following w.r.t an Antenna (i)Basic radiation equation plane. If $\mathrm{E}=50 \mathrm{mV} / \mathrm{m}$ (rms) at a distance of 1 Km , find (i) powectly conducting flat ground resistance assuming antenna terminal current $\mathrm{Km}=3.5 \mathrm{~A}$. find (i) power radiated and (ii)the radiation
beam efficiency (iv) Directivity (v) effective aperture
b) An antenna radiates isotropically over a half-space above a perfectly conducting flat (5.0 M)
(iii) Main
($2+2=4.0 \mathrm{M}$)
9) Write a short note on
a) Fields in a Rectangular wave guide.
b) Various antenna types and their corresponding field patterns.
c) Maxwell's Equations in both differential and integral forms

BITS-Pilani Dubai, International Academic City, Dubai
 Second Semester, Academic Year 2007-2008 Evaluation Component: TEST-II (Open Book)
 EEE UC33 ELECTROMAGNETIC FILEDS AND WAVES

Date : $11^{\text {th }}$ May 2008
Max. Marks: 20
Duration: $\mathbf{5 0} \mathbf{m t s}$
Weightage: 20\%
Note:- 1. ANSWER ALL QUESTIONS and ANSWER only to specific point being questioned.
2. Make assumptions, if any, but explicitly indicate the assumptions made
3. Students will be provided Graph sheets / Smith Charts, as may be required.
4. Students are permitted to use the prescribed text (i.e., "Electromagnetics with Applications by Kraus/Fleisch") only.
1) Assume 1 MHz plane wave having a maximum amplitude of its electric filed intensity equal to $0.1 \mathrm{~V} / \mathrm{m}$ is propagating in fresh water. Calculate the following parameters of the wave:

a) phase constant,
b) wavelength,
c) phase velocity,
d) intrinsic impedance
e) Ex component of the wave and
f) Hy component of the wave
2) Obtain expression for the time-average Poynting vector of a TEM wave propagating in good conductor from fundamentals and prove that in a distance of skin depth, the power density is only 0.135 of its value at the surface.
3) Consider two fields in which one is left circularly polarized and the other is right circularly polarized; Assume both are of the same amplitude, frequency, and propagation direction, but there exist a phase shift of δ radians between the two. Derive an expression for the resultant Electric Filed intensity when they both are superimposed. Comment on the polarization of and the resulting angle with which field vector is oriented in the resultant superimposed field.
$(2+1+1=4 \mathrm{M})$
4) A parallel-plate transmission line (equivalent to guide for the wave), has plate separation $\mathrm{d}=1 \mathrm{~cm}$, and is filled with Teflon. Determine the maximum operating frequency such that only a TEM wave will propagate.
5) A differential current filament, acting as an antenna, has a length d and carries a current $\mathrm{I}=\mathrm{I}_{0} \cos \omega \mathrm{t}$. (in the positive z direction). The filament is aligned along z -direction symmetrical to the z -axis. Starting from fundamentals obtain expressions for H and E in spherical coordinates.

BITS-Pilani עubai, International Academic City, Dubai
 Second Semester, Academic Year 2007-2008
 ~ 33 Evaluation Component: TEST-I (Closed Book)
 EEE Uq33 ELECTROMAGNETIC FILEDS AND WAVES

Date : 30 ${ }^{\text {th }}$ March. 2008
 Duration: $\mathbf{5 0} \mathbf{m t s}$

Note:- 1. ANSWER ALL QUESTIONS and ANSWER only to specific point being questioned
Max. Marks: $\mathbf{2 5}$
2. Make assumptions, if any, but explicitly indicate the assumptions maint being questioned. Weightage: 25\%
3. Students will be provided Graph sheets / Smith Charts, as may be required
1)
a) Four $3-\mathrm{pC}$ charges are at the corners of a $1-\mathrm{m}$ square. The two charges an the left side of the square are positive. The two charges on the right side are negative. Find the filed E at the center of the square. Assume $\varepsilon_{\mathrm{r}}=1$,
b) Two long parallel conductors of a dc transmission line separated by 2 m have char (2.0 M) $\mathrm{mC} \mathrm{m}^{-1}$ of opposite sign. Both lines are 8 m above ground. What is the have charges of $\rho_{\mathrm{L}}=5$ 2) electric field 4 m directly below one of the wires?

$$
\text { a) A } 765-\mathrm{kV} \text { rms. 3-nhase } 60 \text {. . }
$$

(2.0 M)
m above ground. Each conductor is a bundle of has conductors spaced 16 m . Their height is 12 of 0.6 m . A fluorescent lamp bulb held 2 m above gror conductors. It has an effective diameter lights to full brilliance. No wires are connected ground at point P under an outside conductor electric field at P?
b) Write Maxwell's Equations in both Integral and Differential forms
3) Starting from fundamentals derive the the same as a four terminal network.
4) A uniform 100 -W transmission (4.0 M) match this load to the line. Find
a) Distance d1 from the load to stub.
b) Distance or length d 2 of the stub
c) VSWR on d1 line, and
d) VSWR on stub
5) Write a short note on
a) What is stub tuning? And why stubs for the tuning, in the context of transmission lines, instead use of a coil or a capacitor?.
(3.0 M)
b) The electric field Ey of a TEM wave equals $100 \mathrm{~V} \mathrm{m-1} \mathrm{rms} .\mathrm{Find} \mathrm{(i)} \mathrm{magnitude} \mathrm{of} \mathrm{velocity} \mathrm{and}$ Poynting vector $|\mathrm{PV}|$ in air (ii)velocity and $|\mathrm{PV}|$ in a lossless dielectric medium with $\varepsilon_{\mathrm{r}}=9$.

ALL THE BEST

