COMPREHENSIVE EXAMINATION -III YEAR -II SEMESTER 2005-2006

Date: 28/05/06 Course: Numerical Analysis AAOC UC341

Duration: 3hours Total Marks: 40

Instructors: Dr Priti Bajpai, Dr A. Somasundaram

NOTE: ANSWER PART - A AND PART - B SEPARATELY

PART - A

Q1 [2+2+2+2]

- (a) If $f(x) = x^{1/7}$ is computed for $0 \le x \le 7$ correct to *n* significant decimal digits then how many significant digits $f(x^*)$ approximates f(x).
- (b) Establish an iteration formula to find the reciprocal of a positive number N by Newton's method.
- (c) Solve the following system of equation by Gauss elimination method with five digit arithmetic 3x+4y+5z=18, 2x-y+8z=13, 5x-2y+7z=20.
- (d) Solve the boundary value problem 4y'' + y = 0, y(0) = 0, $y(\pi) = 2$ by replacing the derivative with a central difference approximation with $h = \frac{\pi}{3}$.

Q2

- (a) Find by Regula- Falsi method the positive root of $x^2 \log_{10} x 12 = 0$ correct to 5 decimal places in 3 iterations.
- (b) Solve the system of equation 28x + 4y z = 32, x + 3y + 10z = 24, 2x + 17y + 4z = 35 by Gauss-Seidel method in 3 iterations with 5 digit arithmetic.

Q3 [3+3]

(a) Determine the largest Eigen value of the matrix $\begin{pmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{pmatrix}$ in three iterations

with initial eigen vector $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}^T$ and using five digit arithmetic.

(b) Find $\frac{dy}{dx}$ at x = 51 from the following data with five digit arithmetic

x: 50 60 70 80 90 y: 19.96 36.65 58.81 77.21 94.61 Q4

[3+3]

(a) Using 3-point Gauss- Chebyshev Quadrature, evaluate the integral

$$\int_{0}^{1} \frac{\cos \pi x}{\left[x(1-x)\right]^{\frac{3}{2}}} dx$$

(b) Find $x_0, x_1, A_0, A_1, \alpha$ so that the following integration rule is exact for a polynomial of degree as high as possible

$$\int_{-1}^{1} \frac{f(x)}{1+x^2} dx = A_0 f(x_0) + A_1 f(x_1) + E \qquad \xi \in (-1,1)$$

Q5

[3+3]

- (a) Find the minimum number of equispaced tabular points required for piecewise cubic interpolation of the function $f(x) = \ln x$, on the interval [1, 2] to get 4 decimal place accuracy.
- (b) Let $f(x) = x^3 x^2 + 2x 2$ interpolate f(x) at -2, 0, 1, 2. Prepare the table of divided differences. Now f(4) = -90 is added to the data, to get the interpolating polynomial $p_4(x) = p_3(x) + g(x)$. Find g(x) and hence interpolate f(3).

Q6

[4+4

- (a) Use R-K method of order 4 to find the value of y(0.1) and y(0.2) with five digit arithmetic as a solution of $\frac{dy}{dx} = x + y^3$, y(0) = 2, where h=0.1
- (b) Using Adam Moulton's Predictor corrector formula for the differential equation $\frac{d^2y}{dx^2} = y$ find the value of y(0.4) using six digit arithmetic, given y(0) = 2, y(0.1) = 2, y(0.2) = 2.04, y(0.3) = 2.09068, y'(0) = 1, y'(0.1) = 0.200334, y'(0.2) = 0.402677, y'(0.3) = 0.60904.

BITS, Pilani-Dubai Campus, Knowledge Village, Dubai III YEAR II SEMESTER

QUIZ - 2 (Closed Book)

Course Title: Numerical Analysis Date: 27.4.2006 Time: 30 min	Course No: AAOC UC341 Max marks: 10 Weightage: 10%			
Name of the Student:				
ID Man				

Set: B

Recheck Request:

Branch:

Answer all Questions

1. What is an ill conditioned system?

[0.5]

2. The velocity of a particle which starts from rest is given by the following table:

t (sec)	0	2	4	6	8	10	12	14	16	18	20
v (ft/sec)	0	16	29	40	46	51	32	18	8	3	0

Composite Simpson's $\frac{3}{8}$ rule is[0.5]

and the total distance traveled is[1]

3. Newton's forward interpolation polynomial is [0.5]

4. If $f(x) = x^2 e^{-\frac{x}{2}}$ then at x = 1.1, 2, 3.5, 5, 7.1 the divided difference table with 4 digit arithmetic is

x f(x) f[,]

1.1

2

3.5

5

7.1 [1.5]

5.	If $x = (1.25, 0.02, -5.15, 0)$ then (i) $ x _1 = \dots$	
	(ii) $ x _2 = \dots$ (iii) $ x _{\infty} = \dots$	[1.5]
6.	The upper bound on error in piece-wise linear interpolation is	
		[0.5]
7.	If $Ax = b$ is written as $x = Bx + c$ then $x = Bx + c$ has a unique solution if	
	······································	[0.5]
8.	The second derivative at x_i when the value of f are given with spacing	
	$x_i = x_0 + ih, i = 0, 1, \dots n$ is	[0.5]
9.	Using Jacobi's method find the following for the given system of equations	with 4
	digit arithmetic $3x + 4y + 15z = 54.8$; $x + 12y + 3z = 39.66$; $10x + y - 2z = 7$.74
	(i) $x =$	
	(ii) <i>y</i> =	
	(iii) $z =$	
	(iv) $x_1 = \dots$ when $x_0 = \dots$,
	(v) $y_1 = \dots$ when $y_0 = \dots$	
	(vi) $z_1 = \dots$ when $z_0 = \dots$	[1.5]
10.	The interpolating polynomial in Lagrangian form for the data	
	x: 2 -1 4	
	f: 6 3 5 without expanding is given by $f(x) =$. [1]
	3h [(f. +fn) + 3(f, +f2 +fx+)	
	+ 2 (+3++6++9+)	
	and the value of $f(1) = \frac{490.5}{}$	[0.5]

6. If $f(x) = x^2 e^{-\frac{x}{2}}$ then at x = 1.1, 2, 3.5, 5, 7.1 the divided difference table is

$$x \qquad f(x) \qquad f[,$$

$$p_n(n) = t_0 + s_0 + \frac{s_0(s-1)}{2!} s_0^{\frac{1}{2}} + \cdots + \frac{s_0(s-1)\cdots(s-n+1)}{n!} s_n^{\frac{n}{2}}$$

where
$$s = \frac{x - n_0}{h}$$

[1.5]

- 8. The upper bound on error in piece-wise linear interpolation is $\frac{1}{8}$ [0.5]
- 9. The second derivative at x_i , when the value of f are given with spacing

$$x_i = x_0 + ih, i = 0, 1, \dots n \text{ is } \frac{f_i''}{h} = \frac{f_{i+1} - 2 + f_i + f_{i-1}}{h}$$
 [0.5]

10. The velocity of a particle which starts from rest is given by the following table:

t(sec)	0	2	4	6	8	10	12	14	16	18	20
v (ft/sec)	0	16	29	40	46	51	32	18	8	3	0

Composite Simpson's
$$\frac{3}{8}$$
 rule is[0.5]

Test: II (OB) Course: Numerical Analysis - AAOC UC341

Date: 07.05.06 Duration: 50 min Weightage: 20

Answer ALL Questions

1. Find A_0 , A_1 , x_1 so that the following rule is exact for all polynomial of degree as high as possible.

$$\int_{0}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} dx = A_{0} f(0) + A_{1} f(x_{1}) + \alpha f''(\xi)$$
 [5]

2. Calculate $\int_{0}^{1} \frac{(\log x + e^{x})}{[x(1-x)]^{\frac{3}{2}}} dx$ using Chebyshev 3 point quadrature formula. [5]

3. Solve
$$y_{n+2} + y_n = 52^n$$
 given $y_0 = 1$, $y_1 = 0$. [2]

- 4. Using Runge-Kutta method of order four, solve y'' = y + xy', y(0) = 1, y'(0) = 0 to find y(0.2) and y'(0.2) with five digit arithmetic. [4]
- 5. Using 4th order Adams-Moulton predictor corrector and modifier find y(1.4) given that $y'-x^2y=x^2$, y(1)=1, y(1.1)=1.2, y(1.2)=1.4662, y(1.3)=1.8213 with five digit arithmetic. [4]

Make up for Test: I (CB) Course: Numerical Analysis - AAOC UC341

Date: 04.04.06 Total Marks: 20 Duration: 50 min Weightage: 20

[4]

Answer ALL Questions

PART - A

- 1. If $f(x) = x^3 2x^2 0.75x + 2.25 = 0$ has a double root use Newton's method for two iterations to find it. Use five digit arithmetic with rounding, given $x_0 = 1$. [2]
- 2. Solve the system of non linear equations using Newton's method with $x_0 = 1$, $y_0 = 1$ and five digit arithmetic with rounding in two iterations.

$$0.3\sqrt{x} - e^{\frac{y}{3}} + y = -0.469228$$

$$e^{\frac{x}{3}} + 0.5\sqrt{y} - x = 1.034917$$
[4]

3. Check the conditions of convergence over $0.5 \le x \le 1$ and $1 \le y \le 1.5$ and hence solve the system of non linear equations by fixed point iteration method in two iterations.

$$x^{\frac{1}{3}} + y^{\frac{1}{4}} - x - 1.175 = 0$$

$$x^{\frac{1}{4}} + y^{\frac{1}{2}} - y - 0.8412 = 0$$

Use five digit arithmetic with rounding and given $x_0 = 1$, $y_0 = 1$

PART - B

4. Solve the following system of equations by using Gauss-elimination algorithm

$$x_1 + x_2 - 2x_3 = 2.5$$

 $4x_1 - 2x_2 + x_3 = 5.5$
 $3x_1 - x_2 + 3x_3 = 9$ [5]

5. By Gauss elimination method find the inverse of the coefficient matrix of

$$4x_1 - 10x_2 + 5x_3 = 32$$

$$5x_1 - 4x_2 + 10x_3 = 39$$

$$10x_1 + 5x_2 - 4x_3 = 17$$
[5]

Also find the determinant value of the coefficient matrix

Test: I (CB) Course: Numerical Analysis – AAOCU341

Date: 26.03.06 Duration: 50 min
Total Marks: 20 Weightage: 20

Answer ALL Questions

PART-A

- 1. If $f(x) = x^3 6.25x^2 + 12.5x 7.8125 = 0$ has a double root use Newton's method to find it. Use five digit arithmetic with rounding, given $x_0 = 2$. [2]
- 2. Solve the system of non linear equations using Newton's method with $x_0 = 0$, $y_0 = 0$ and five digit arithmetic with rounding.

$$x^{2} - y^{3} - x + y - 1.125 = 0$$

$$x^{3} + y^{2} + x + y + 0.875 = 0$$
 [4]

3. Check the conditions of convergence and hence solve the system of non linear equations by fixed point iteration method.

$$\frac{x^{3/2}}{9} + \frac{y^{2/3}}{4} - x + 0.64 = 0$$

$$\frac{x^{\frac{2}{3}}}{4} - \frac{y^{\frac{3}{2}}}{9} - y + 0.861 = 0$$

Use five digit arithmetic with rounding and given $x_0 = 0.8$, $y_0 = 1.2$,

$$R: [0.8 \le x \le 1.2, 0.8 \le y \le 1.2]$$
 [4]

PART - B

4. Gauss elimination with scaled partial pivoting is performed on a 3x3 matrix A. After two steps of Gauss elimination working matrix with scaling factors 4,6,8 respectively, $\overline{p} = (p_1, p_2, p_3) = (2,1,3)$ and with multipliers is obtained as

$$\begin{pmatrix} 0.75 & -1.125 & 1.5 \\ 0.66667 & 0.16667 & -1 \\ 0.9375 & -0.75 & 2.5625 \end{pmatrix}$$

Using forward and backward substitution, solve the system of equation AX = b where $b = (-16, 19, 21)^T$ using five digit arithmetic. [3]

- 5. Compute the determinant value of $\begin{pmatrix} 3 & 5 & 2 \\ 2 & -4 & -2 \\ 10 & 5 & 1 \end{pmatrix}$ by using Gauss elimination method. [3]
- 6. Find the inverse of $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix}$ by Gauss elimination method. [4]

BITS, Pilani-Dubai Campus, Knowledge Village, Dubai III YEAR II SEMESTER

MAKE UP FOR QUIZ - 1 (Closed Book)

Course Title: Numerical Analysis Date: 21.3.2006 Time: 30 min	Course No: AAOC UC341 Max marks: 10 Weightage: 10%
Name of the Student:	
ID No:	
Branch:	:
Set: B	

Recheck Request:

Answer all Questions

1.	The error in adding 0.348, 0.1834, 345.4, 235.2, 11.75, 0.0849, 0.021	4, 0.000354
	will be the least when added in	order
	and the sum when 3 digit arithmetic used is	[1]
2.	Name any 4 types of error.	[1]

3. If e^x is to be evaluated correct to 8 significant digits for x lying between -8 and 9, what digit arithmetic should be used? [2]

5.	Given $f(x) = x^3 - x - 11 = 0$, on using bisection method the root lies between
	and the first and second approximations are
	and[1]
6.	Given $f(x) = x^2 - \log x - 12 = 0$ if the root lies in the interval (3,4) then the
	Regula Falsi formula is
	and hence the value of x_1 is
7.	Given $f(x) = x^3 + 3x - 1 = 0$ if the root lies in the interval (0,1) then the Newton's
	formula is
	and hence the value of x_1 is
8.	Solve the function $\cos x = 3x - 1$ by the fixed point theorem in a suitable interval
	I.
	a. I =
	b. $g(x) = \dots$ and $ g'(x) \le$

c. $x_1 =$

d. $x_2 =$

BITS, Pilani-Dubai Campus, Knowledge Village, Dubai III YEAR II SEMESTER

QUIZ - 1 (Closed Book)

Course Title: Numerical Analysis
Date: 9.3.2006
Time: 30 min

Name of the Student:

ID No:

Branch:

Set: A

Recheck Request:

Answer all Questions

1. If the approximate value of $\frac{8}{9}$ is 0.889 then the relative error is less than

[1]

- 4. If e^{5x} is to be evaluated correct to 8 significant digits for x lying between -10 and 8, what digit arithmetic should be used? [2]

5.	Given $f(x) = x^3 - 9x + 1 = 0$, on using bisection method the root lies between
	and the first and second approximations are
	and[1]
6.	Given $f(x) = xe^x - 2 = 0$ if the root lies in the interval (0,1) then the Newton's
	formula is
	and hence the value of x_1 is
7.	The formula for calculating a root of $f(x)$ by Regula-Falsi method in the interval
	(a,b) is
	$x_1 =$
	[1]
8.	Solve the function $e^{-x} - 10x$ by the fixed point theorem in a suitable interval I.
	(i) I =
	(ii) $g(x) = \dots$ and $ g'(x) \leq$
	(iii) $x_1 =$
	(iv) $x_2 =$
	[2]