BITS, PILANI – DUBAI CAMPUS I SEMESTER 2012 – 2013

Course Code: ECE C452

COMPREHENSIVE EXAMINATION-III YR ECE

Course Title: ELECTROMAGNETIC FIELDS AND MICROWAVE ENGG.

Max.marks:80

Weightage: 40%

Date: 31.12,2012

Duration: 3 Hrs

Instructions: 1.ANSWER all questions in sequence of their order.

	2. Make assumptions, if any, but explicitly indicate the assumptions made	
1		4M
	potential at that point .	
	b) Apply differential form of ampere law to find current density \hat{J} at point P (0, 1, 0) if magnetic filed	4M
	intensity in the region is $4\Pi(xy.\hat{a}_x + yz.\hat{a}_y + zx.\hat{a}_z)\mu A/m$	
2	a) Derive solution in differential form and integral form for $\oint \hat{D} . \hat{ds}$ in static and time varying field.	4M
	b) Derive wave equation and find its solution for conducting medium	4M
3.	a. A certain medium has following parameters: Relative Permeability $\mu_r = 10$; relative permittivity	5M
	$\varepsilon_r = 2.5$ and conductivity of medium $\sigma = 10^{-4}$ mho/m. Determine attenuation constant . Phase	
	constant, wave length, velocity of propagation and wave impedance at 1GHz	
	b. Electromagnetic wave has $\hat{E} = (4.\hat{a}_x\hat{a}_y + 2.\hat{a}_z)$ V/m and $\hat{H} = (6.\hat{a}_x + 18.\hat{a}_y - 3.\hat{a}_z)$ A/m.	5M
	i) Power flow vector	JIVI
	ii) Direction of transmission	
4.	iii) Relative permittivity ε_r if relative permeability $\mu_r=1$	
4.	a. Derive the characteristic impedance of lossless line and distortion less line as $Z_o = \sqrt{\frac{L}{C}}$	6M
	b. Transmission line has Z_R =200 Ω and Z_0 =100 Ω Derive the expression for SWR and calculate its minimum and maximum values	5M
5.	a. Input impedance of transmission line having length ℓ -30.2 λ and Z_o =10 Ω has $K=0.6 \angle 50^\circ$. Calculate	6M
	(i) Input impedance and (ii) single stub matching parameters.	
	b. A load impedance Z_R =10 Ω is to be matched with source having internal impedance Z_{IN} =2.5 $k\Omega$ Design a matching network to match Z_R with Z_{IN}	4M
6.	a. Obtain expression for magnetic field intensity at a distance of 'r' m from a small radiating source	6M
	b. Calculate directions corresponding to Maxima, Minima and Half power for a broad side array having two elements separated by distance λ/2 and plot its radiation pattern in polar chart.	6M
7.	a. Explain the operation of parabolic antenna and design it to have gain of 30 dB to receive signal at 6 GHz from satellite	6M
	b. Draw Non resonant antenna and explain its operation	5M
8.	14/	10
	i. Reflex klystron	м
	ii. Tunnel diode iii. Parametric Amplifier	IVI
	iv. Microwave Circuit isolator	

BITS, PILANI - DUBAI CAMPUS

I SEMESTER 2012 - 2013

Course Code: ECE C452 III Year ECE - Test-2[OPEN BOOK]

Course Title: ELECTROMAGNETIC FIELDS AND MICROWAVE ENGG.

Instructions: 1.ANSWER all questions in sequence of their order.

2. Make assumptions, if any, but explicitly indicate the assumptions made

Date: 18.11.2012 Duration: 50 minutes

1.	1. a. Find velocity of propagation through telephone line which has R=13 Ω/km, L=3 mH/km		
	G=0 mho and C=0.5 μF. Assume 4 kHz signal is passed through line.		
	b. The attenuation constant of line is $\alpha = \sqrt{\frac{1}{2}(\sqrt{(R^2 + \omega^2 L^2).(G^2 + \omega^2 C^2).} + (RG - \omega^2 LC))}$. Obtain the expression $\frac{R}{L} = \frac{G}{C}$ for line to be distortion less by giving appropriate changes only in	6 M	
	capacitance.		
2.	a. Write minimum and maximum value of reflection coefficient 'K' and SWR 'S'. Obtain	4 M	
	these values using appropriate expression.		
	b. Calculate the value of reflection coefficient and standing wave ratio if the line has	6M	
	$Z_R = 100 + j200\Omega$ and $Z_0 = 100\Omega$. [Note: Do not use smith chart]		
3.	a. Obtain the expression $Z_{IN} = Z_0 \frac{1 + Ke^{-2Pl}}{1 - Ke^{-2Pl}}$ from standard expression of Z_{IN} where K is reflection coefficient and P is propagation constant.	6 M	
,	b. A lossless line has velocity of propagation 1.5x10 ⁸ m/sec. Find the value of inductance if the capacitance of line 150 nF/m	2M	
4.	a. A transmission line having characteristic impedance $Z_0=600~\Omega$ is to be matched with	6 M	
	terminating load impedance of Z_R =900+j400 Ω for a frequency 600 MHz. Find required single		
	stub matching parameters using smith chart.		
	b. Using Smith chart, find the unknown terminating impedance of line if input impedance	6M	
	of the transmission line is Z_{IN} =75+j75 Ω and the characteristic impedance of line is Z_0 =75 Ω .		
	The first maximum is located at a distance 8.30\(\lambda\) from the load.		

BITS, PILANI - DUBAI CAMPUS

I SEMESTER 2012 - 2013

Course Code: ECE C452

TEST-1

Course Title: ELECTROMAGNETIC FIELDS AND MICROWAVE ENGG.

Date: 30.09.2012
Duration: 50 minutes

Instructions: 1.ANSWER all questions in sequence of their order.

Inst	ructions: 1.ANSWER all questions in sequence of their order. 2. Make assumptions, if any, but explicitly indicate the assumptions made	
1.	a) Find electric field intensity at $(1,1,0)$ due to a reference point charge $Q_1=3/\sqrt{2}$ nC at	6 M
	(1,0,0), $Q_2=3/\sqrt{2}$ nC at (0, 1, 0) and $Q_3=3$ nC at (0, 0, 0). Find the potential at point	
	(1,1,0).	
	b) Find volume charge density at point P (0, 1, 0) for electric flux density	4 M
	$4\Pi(xy.\hat{a}_x + yz.\hat{a}_y + zx.\hat{a}_z)\mu C/m^2$	
2.	a) The scalar potential field in free space given by the expression $V = 2x^2yz$ is	6 M
	established by volume charge density. Find	
	i. the magnitude of volume charge density	
	ii. potential difference between points A(1,4,5) and B(1,2,5)	
	b) Static magnetic filed $\hat{H} = r.\sin\theta\hat{a}_r \text{mA/m}$ is established by current density \hat{J} . Find	6M
	current density \hat{J} at point $P(r = 1m, \theta = 30^{\circ}, \phi = 30^{\circ})$.	
3.	a) Write the solution for $\oint \hat{E}.\hat{dl}$ in static and time varying fields	4 M
	b) Solve the following expression for time varying field in lossless medium $\nabla X(\nabla X\hat{E})$, where E is electric field intensity	6 M
4.	a) Derive Maxwell equation for time varying field in harmonic form. Assume lossless	6 M
	dielectric medium.	
	b) The magnetic field component of EM wave has $\hat{H} = 25.Sin(2.10^8 t - 6y)\hat{a}_x$.	
	i. Find frequency of wave	8 M
	ii. Find electric field intensity \hat{E}	
	iii. Find \hat{E} is normal to \hat{H}	
	iv. Find direction of propagation	
5.	Write your understanding on following	1 M
	(i) $\nabla \cdot \hat{B} = 0$	
	(ii) $\nabla x \hat{E} = 0$	

BITS PILANI, DUBAI CAMPUS I SEMESTER 2012 – 2013

Version B

Name:		Id No:	·	·
Course Title: ELE Duration: 20 minu Instructions: 1.4	Course Code: ECE C452 Quiz-2 Course Title: ELECTROMAGNETIC FIELDS AND MICROWAVE ENGG. Duration: 20 minutes Instructions: 1.ANSWER all questions with most appropriate answer(s), at the space provided. 2. Make assumptions, if any, but explicitly indicate the assumptions made			
•	W and Beam with between Nulls fi		•	2 1
	H in mA/m 1 1/√2 π/2			2.1
-π	-π/3 π/3 π	Angle		
2. Which type ante	nna is used in mobile communicati	on?		1 M
3. Draw Yagi anten	na and design it for 7 MHz bandwi	dth spread ov	ver 61MHz to 68 MHz	2 M
				·
. Dipole is defined to radiate electron	as two opposite charges separated l nagnetic energy.	by small dista	ince. Write how to make th	is dipole 1 M
From the following number of minor lo	g radiation pattern ,radiation has	dir	rectional transmission and	2 M

4.

5.

BITS PILANI, DUBAI CAMPUS I SEMESTER 2012 – 2013

Version A

Name:		10 No:	
5.	Find propagation constant and characteristic i voltage 2.4∠2 and sending end voltage 5∠2		
6.	Find primary constant of line having secondar constant P=1+j1 .Assume w=5000 radians/sec		20=600∠0.785 and propagation
7.	Draw transmission line equivalent circuit in T	section and	, π section symmetrical network form
	Calculate the value of attenuation constant and poropagation 2x10 ⁵ m/sec. Assume w=5000 radia		ant of lossless line having velocity of
	·		