BITS, PILANI-DUBAI DUBAI INTERNATIONAL CITY YEAR-III (EEE, EIE, CS, MECH. & CHEM), SEMESTER I-2007-2008

COMPREHENSIVE EXAMINATION

Date: 9-01-2008 Time: 3 hours Course Number: AAOC UC 321 Course Title: Control Systems
Maximum Marks: 80 Weightage: 40%

Part A

1. Reduce the block diagram and obtain C(s) / R(s)

[8]

2. Using Masons gain formula, find C(s) / R(s)

[7]

3. Derive the torque equation of the system shown, referred to Shaft 1 and hence derive the torque equation referred to shaft 2. [10]

4. With reference to the following figure of the speed control system of a DC motor, the generator field time constant is negligible. The generator is driven at a constant speed giving a generated voltage of "Kg" Volts / field –amp. The DC motor is separately excited and it maintains a back emf of "K_b" volts per radian/sec. It produces a torque of "K_T" Newton-metre / amp. The combined moment of inertia of motor and load is "J" Kg-m². The friction is negligible. The tachometer has a gain of "K_t" volts per radian/sec and the amplifier gain is "K_A" amperes/ volt. Find out the transfer function $\Omega(s)$ / Ei(s) where $\Omega(s)$ is the Laplace transform of speed ω (t) and Ei(s) is the Laplace transform of e_i(t). Assume

With the system originally at rest, a control voltage, $e_i = 100$ V is suddenly applied. Determine how the load speed (ω (t)) will change with time and hence find the steady state speed (in radians per sec.).

The given data:

J= 6 Kg-m², K_A = 4.0 amperes/ volt, K_T = 1.5 Newton-metre / amp, K_g = 50 Volts / field -amp. Ra =1.0 ohm, K_t =0.2 volts per radian/sec, K_b = K_T in M.K.S Units

- 5. Sketch the Root locus for $G(s)H(s) = K/((s+4)(s^2+4s+25))$. Calculate the angle of asymptotes, coordinates of centroid, angle of departure at poles and points of intersection of the root locus with the imaginary axis. (sketch on graph sheet) [10]
- 6. After deriving the necessary steps in detail, sketch the polar plot for

G(S)=
$$\frac{1}{(s(1+sT_1)(1+sT_2))}$$
Also determine the point of intersection of the plot with the real axis. [10]

PART C

- 7. For a closed loop negative feedback control system with unity feedback, G(s) = 1/(s+1)(s+2)
 Derive the expression for the response c(t) due to r(t)= t. Hence calculate the steady state response. [10]
- 8. The negative feedback control system has the forward path transfer function as
 G(s) = 10/s(s+1) While the feedback path transfer function H(s) = 5. Determine the sensitivity of Transfer function with respect to G and H at ω = 2 rad/sec.
 [5]
- 9. By applying Routh stability criterion, find the range of K for the system to be stable for

$$G(s)H(s) = \frac{K}{s(s+5)(s^2+5s+20)}$$
 [10]

BITS, PILANI- DUBAI International Academic City, Test II Open Book AAOC UC 321

IIIrd Year (EEE,EIE,CS, Mech and Chemical) 1st Semester 2007-2008, 13-12-2007

Duration 50 minutes

Max. Marks: 20

1. Find the steady state Error E, if T is unit step input and R=0. [8]

2. The open loop transfer function of unity feedback system is
$$G(s) = \frac{K}{S[1+TS]}$$

For this, overshoot reduces from 0.6 to 0.2 due to change in "K" only. Show that $(TK_1-1)/(TK_2-1) = 43.33$ where K_1 and K_2 are values of K for 0.6 and 0.2 overshoot respectively. [6]

3. For a system with the following characteristic equation, examine stability [6]

$$F(S) = S^6 + 3S^5 + 4S^4 + 6S^3 + 5S^2 + 3S + 2 = 0$$

BITS,Pilani – DUBAI III Year (EEE,CS,EIE,MECH,CHEM) IIIrd Year, 1st Semester, 2007-08

TEST 1

Course No.: AAOC UC321

Max. Marks: 25

Course Title: Control Systems

Duration: 50 minutes

Answer All Questions

 Derive from the fundamentals the Transfer Function of Armature controlled DC Servo motor.(separately excited) [9]

2. Derive the Transfer Function of the following figure using the Block diagram reduction technique [8]

3. Derive the Transfer Function of the figure of question 2 using Signal Flow Graph and Mason's Gain formula. [8]