BITS, PILANI-DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI.

COURSE: CS UC 351

COURSE TITLE: THEORY OF COMPUTATION DATE: 15.1.2004

DURATION: 3 HOURS MAX. MARKS: 100

WEIGHTAGE: 40 MARKS.

COMPREHENSIVE EXAMINATION

PART - A (10 * 2.5 = 25)

- 1. Assume that $R = \{ (a,b), (b,c), (c,a) \}$ be a relation of $\{a,b,c,\}$. Find R^{4} ?
- 2. Show that for any n 0, $1+2+...+n = (n^2 + n) / 2$.
- 3. What is $L(((a \cup b)^*a))$?
- 4. What is the reflexive, transitive closure R* of R = {(a,b), (a,c), (a,d), (d,c),(d,e)}? Draw a directed graph representing K*
- 5. Draw Deterministic Finite Automata to accept the following set of string over the alphabet {0,1 for all strings of length at most 5.
- 6. Explain why every NFA can be converted to an equivalent one that has a single final state.
- 7. Generate a meaningful language using the given G=(W, SIGMA, R, S), where W={S, A, N, V, P} U SIGMA,
 SIGMA= {Jim, big, green, cheese, ate}

 $R = \{P \rightarrow N, P \rightarrow AP, S \rightarrow PVP, A \rightarrow big, A \rightarrow green, N \rightarrow cheese, N \rightarrow Jim, V \rightarrow ate\}.$

- 8. Give the exact definition for Push-Down Automata, Turing machine.
- Show that S =>aabbaa, considering G whose production are S→aAS | a, A→SbA | SS | ba.
 And construct a derivation tree whose yield is aabbaa.
- 10. Give the definition for Class P, Class NP computability.

a) Assume that Language L = {0,1}*{10} of all strings of 0's and 1's that end in 10. The transition table of the above language is:

stat	te		input
		0	ſ
	^	0	1
	0	00	01
	1	10	11
	00	00	- 01
. [01	10	11
	10	00	01
	11	10	11

Draw the Transition Diagram and give the Transition equation delta =?, for the above b) Design the transition table and transition diagram for the deterministic finite automaton M that accepts the language L(M)={w: w{a, b}* and w does not contain three consecutive b's} and is given by the

$$\begin{split} \text{delta} = & \{ (\ q_0, a, \ q_0), (\ q_0, b, \ q_0), (\ q_0, a, \ q_1), (\ q_1, b, \ q_0), (\ q_1, b, \ q_2), (\ q_2, a, \ q_2), (\ q_2, b, q0), (\ q_2, a, \ q_3), \\ & (q_3, a, \ q_3), (\ q_3, b, \ q_3), (\ q_3, b, \ q_0) \} \text{ where } K = & \{q_0, q_1, q_2, q_3\}, \text{ SIGMA} = & \{A, B\}, \ s = q_0, \\ & F = & \{\ q_0, \ q_1, \ q_2, \ q_3\}. \end{split}$$

2. Construct a Non-deterministic finite automata and the Transition table from the transition equation given below:

(10+5)

delta={(q₀,0,q₁),(q₀,1, q₅),(q₁,0, q₆),(q₁,1,q₂),(q₂,0, q₀),(q₂,1, q₂),(q₃,0, q₂),(q₃,1, q₆),(q₄,0, q₇),(q₄,1, q₅),(q₅,0, q₂),(q₅,1,q₆),(q₆,0, q₆),(q₆,1, q₄),(q₇,0, q₆),(q₇,1, q₂)},

where q₀ is the initial state and q₂ is the final state, and SIGMA={0,1}.

3. a) Consider the following productions:

 $S \rightarrow aB \mid bA$

(4+4+4+3)

 $A \rightarrow aS \mid bAA \mid a$

 $B \rightarrow bS \mid aBB \mid b$

For the string aaabbabbba, find

- i) The leftmost derivation,
- ii) The rightmost derivation,
- iii) Parse tree.
- b) Show that the grammar $S \rightarrow a \mid abSb \mid aAb$, $A \rightarrow bS \mid aAAb$ is Ambiguous.
- 4. a) Construct a Turing machine that perform the copying operation of the given string and so the Turing Machine is called as Copying Machine. Thus the given string is #abc#.
 - b) What is meant by Extension of the Turing Machine?

(10 + 5)

5. a) What is called as Halting problem of Turing Machines?

(8+7)

b) Give the four properties, that explain a L be an NP-complete Language.

BITS, PILANI – DUBAI CAMPUS KNOWLEDGE VILLAGE, DUBAI CS UC351, THEORY OF COMPUTATION TEST – I (CLOSED BOOK)

MAXIMUM MARKS: 20 Time: 50 MINUTES

DATE: 02.11.2003

(2)

SUNDAY

ANSWER ALL QUESTIONS:

1. Give the proof for the statement P(n) is 1+2+3+...+n=n(n+1)/2 by induction.

2. Language L = {0,1}*{10} of all strings of 0's and 1's that end in 10. The Finite Automaton recognized Transition table for the above language:

state input

		input	
	0	1	
^	0	1	
0	00	01	
1	10	11	
00	00	01	
01	10	11	
10	00	01	
11	10	11	

Give the Transition Diagram for the above Language.

Design the deterministic finite automaton M that accepts the language (4)
 L(M)={w:w∈{a,b}* and w does not contain three consecutive b's} and is given by the

$$\delta = \{ (q0,a,q0), (q0,b,q0), (q0,a,q1), (q1,b,q0), (q1,b,q2), (q2,a,q2), (q2,b,q0), (q2,a,q3), \\ (q3,a,q3), (q3,b,q3), (q3,b,q0) \}$$
 where $K = \{q0,q1,q2,q3\}, \quad \Sigma = \{a,b\}, \quad s = q0, \quad F = \{q0,q1,q2,q3\} \}$

- 4. Give the Proof for the Closure Properties of Context-Free Language. (4)
- 5. Give the derivation of the string (x1*x2+x1)*(x1+x2) in G, Considering the grammar $G=(V, \Sigma, R, E)$ where V, Σ , and R are as follow: (4) $V=\{x1, x2, +, *, (,), T, F, E\}$ $\Sigma = \{x1, x2, +, *, (,)\}$ $R = \{E \rightarrow E + T, E \rightarrow T, T \rightarrow T*F, T \rightarrow F, F \rightarrow (E), F \rightarrow X1, F \rightarrow X2\}$

 $R = \{E \rightarrow E + T, E \rightarrow T, T \rightarrow T*F, T \rightarrow F, F \rightarrow (E), F \rightarrow X1, F \rightarrow X2$ The symbols E,T, and F are abbreviation for expression, Terms, and factor respectively.

6. Construct a Parse Tree for (-((4x2-y2)+8xy)), for the grammar $G=(V, \Sigma, R, S)$, where $V=\{S, (,), 4, 8, +, -, x, y\}$, and $\Sigma=\{4,8,x,y, (,)\}$ and $R=\{S\to -S, S\to ((S)), S\to (S), S\to 4S, S\to x, S\to y, S\to x, S\to y, S\to S-S, S\to 8S, S\to S+S\}$

9. Let L1 and L2 be two DCFL's. Then L1 UNION L2 is guaranteed to be: i) Empty ii) Regular iii)Deterministic Context_Free iv)context-free v)none of the above. 10. M1 is a DFA such that $L(M1) = \{w: w \{a,b\}^* \text{ and } w \text{ contains an even number of } a,b\}$ a's and an even number of b's}. ADFA = $\{ \langle M, w \rangle : m \text{ is a DFA, } w \{a,b\}^*, \text{ and } M \text{ accepts } w \}$ A DFA = $\{ \le M \ge M \text{ is a DFA and } M \text{ accepts a} \}$ $EDFA = {<M>:M \text{ is a DFA and L(M)} = SII}$ ALLDFA = $\{ \langle M \rangle : M \text{ is a DFA and } L(M) = \{a,b\}^* \}$ EQDFA = $\{ < M1, M2 > : M1, M2 \text{ are DFAs AND } I(M1) = L(M2) \}$ Is <M1> ALLDFA? i) Yes ii) No 11. Assuming the constraint of the above problem, is <M1,M1>€ EQDFA? i) Yes ii) No 12. Consider the Language FINITE DFA = {<M>:M is a DFA and L(M)is finite}. FINITE DFA is: i) not co-recursively enumerable ii) recursively enumerable iii) co-recursively enumerable iv) recursive v) none of the above. 13. A deterministic finite automaton is a simple Language Recognition Device i) Yes ii) No 14. A context free grammar G is a quadruple (V,SIGMA,R,S) where V is an alphabet SIGMA is a subset of V, R is a finite subset of (V-SIGMA)*v*, S is an element of V-SIGMA. i) Yes ii) No

BITS, PILANI – DUBAI CAMPUS KNOWLEDGE VILLAGE, DUBAI CS UC 351, THEORY OF COMPUTATION QUIZ (CLOSED BOOK)

	QUIZ (CLOSED BOOK)	0	
	MAXIMUM MARKS: 10 Time: 30 MINUTES DATE: 22.	12.2003	
	ANSWER ALL QUESTIONS:		
	1. Let $L1 = \{e,a\}$ and $L2 = \{a,b\}$. $M = (L2*)(L1)$. M is:		
	i) {e,a} ii) {a,b} iii) {e,b} iv) {a,b}* v)None of the above		
	2. The String <i>abbab</i> is a member of the Language represented by which of following regular expressions? (sigma = {a,b})	the	
•	i) (aUb) ii) $b(aUb)^*$ iii) $abbab$ iv) ϕ v) $(ab)+(bb)+(ba)+b$		
	3. Let $A = \{a,b,c,d,e\}$. How many elements are there in $A \times A$.		
3	i) 1 ii) 25 iii) 5 iv) 32	:	
	 4. Let M = (K,SIGMA,DELTA,s, F) be an NFA, where K = {q0,q1,q2}, SIGMA = {a,b,c,d}, DELTA={(q0,a,q0),(q0,e,q1),(q1,b,q1), (q1,c,q1),(q1,e,q2),(q2,d,q2)} S = q0, F = {q0,q1,q2}. The regular language corresponds to the language accepted by M is: 	· ·	
	i) (abcd) ii)a*b*c*d* iii)(aVb U c d)* iv) a*(bUc)*d* v) none o	f above	
	5. Assume that symbols in upper case (S,A,B etc.) are non-terminals, and that symbols in lower case (a,b,c, etc.) are terminals. Which of the following is context-free rule?		
	i) SA→B ii) SA→S iii) b→SA iv) S→aS		
)	6. Assume that symbols in upper case (S,A,B etc.) are non-terminals, and that symbols in lower case (a,b,c, etc.) are terminals. Which of the following is a NOT context-free rule?		
	 1) S→B ii) S→S iii) b→SA iv) S→aS 7. How many derivations does the string ab have in G 		
	i) 0 ii) 2 iii) 1 iv) 3		
8	8. Let L1 and L2 be two DCFL's. Then L1L2 is guaranteed to be:		
	i) Empty ii) Regular iii)Deterministic Context_Free iv)context-free		
	v)none of the above.		

15	The tabular representation of the transition function can be represented in a graphical model or diagram, called as:					
	i) Device Diagram ii) Machine Diagram iii) State Diagram iv) Standard					
	diagram .					
16.	 A Non-Deterministic Finite automaton can be much more convenient device to design than a deterministic finite automata. 					
	i) Yes ii) No					
17.	In a non-deterministic finite automaton, \triangle is:					
	i) Deterministic state ii) Transition relation iii) Transfer function					
18.	For each Non-deterministic finite automata there is an equivalent deterministic finite automaton.					
	i) Yes ii) No					
19.	The Class of language accepted by finite automata is closed under a)Union, b)concatenation, c)Kleene star, d)complementation, e)intersection.					
	i) a, c, d, e ii) b, d, e iii) a, b, d, e iv) a, b, c, d, e					
20.	The Context free languages are closed under union, concatenation, Kleene star, Intersection.					
	i) Yes ii) No					
	CM-MADIAJAGAN	?				