Course No: EEE UC381

Course Title: Electronic Devices & Integrated Circuits

Class: BS-III Year (EEE)

COMPREHENSIVE EXAMINATION (CLOSED BOOK)

Duration: Three hours

Date: 15/01/04

Note:

I. Answer any FIVE questions. All question carry equal marks.

II. Question paper contains SIX questions on two pages.

- III. Used suitable data and constant from the given sheets, otherwise assume data and constant, wherever required.
- IV. Please return all the enclosed sheets to invigilator(s) after the exams.

V. Answer all the parts of the question at one place.

- (a) Draw an equilibrium band diagram for an abrupt Si P-N junction Q.1 with the help the data given below.
 - Indicate fermi level position relative for the intrinsic level on each side.

(ii) Find the contact potential form the diagram.

(iii) Calculate contact potential with the analytical expression. Given data:

$$\begin{array}{lll} \underline{P - side} & N_{-} \underline{side} \\ N_{a} = 10^{17} \ cm^{-3} & N_{d} = 10^{15} & T = 300 K \\ \tau_{n} = 0.1 \ \mu s & \tau_{p} = 10 \ \mu s & n_{i} = 1.5 \ x 10^{10} \ cm^{-3} \\ \mu_{p} = 200 \ cm^{2} / V - s & \mu_{n} = 1300 & A = 10^{-4} \ cm^{2} \\ \mu_{n} = 700 & \mu_{p} = 450 & A = 10^{-4} \ cm^{2} \end{array}$$

[10] (b) Draw the electron and hole concentration of current versus distance in a forward bias PN junction. [4]

(c) What do you understand by Gate Induced Drain Leakage (GIDL) in MOSFET. [2]

(a) Assume the concentration of electron in the conduction band is Q.2

$$n_0 = N_c e^{-(E_C - E_c)/KT}$$

and the concentration of holes in the valance band is $p_0 = N_v e^{-(E_F - E_V)/KT}$,

$$p_0 = N_v e^{-(E_F - E_V)/KT}$$

Prove that intrinsic concentration is
$$n_i = (N_C * N_V)^{1/2} e_g^{-E/2KT}$$
[10]

 (b) Draw the energy band diagram following: (i) Forward bias (iii) Equilibrium condition. Indicate clearly all the energy level in 	(ii) Reverse bias	
Q.3 (a) In a P-type semiconductor the ferming value band. If the concentration of find the new position of the ferming Show each ferming level in the energy level.	of acceptor atoms is tripled, level. Assume KT=0.03eV.	1
(b) Discuss in brief the following ICs fat (i) Oxidation (ii) SiO ₂ growth (iii) I	brication steps:	
Q.4 (a) Calculate the Threshold voltage of n ⁺ - poly-silicon gate with SiO ₂ thick and fixed charges of 2x 10 ¹⁰ q C/cr depletion mode device? (Use \$\phi_{ms}\$=	kness=50 A ⁰ . $N_d = 10^{18}$ cm ⁻³ cm ² . It is an enhancement or -0.1V, $n_i = 1.5 \times 10^{10}$ cm ⁻³ , [10]]
$\epsilon_i=3.9x8.85x10^{-14} \text{ F/m}, \ \epsilon_s=11.8x8.85$ (b) Discuss the effect of temperature on	n E _G for Si and Ge. Calculate	
the value of E _G at room temperature.	1 4 1	
(c) Name the materials used for making		
Q.5 (a) A silicon sample at T=300K conconcentration of N _A =10 ¹⁶ cm ⁻³ . Det donor impurity atoms that must be a type and the fermi energy is 0.20eV	termine the concentration of added so that the silicon is N-	l
edge.	[2]	Į
 (b) Write any four applications of LEDs (c) Draw the following schemat semiconductor; (i) France hand diagram 		•
(i) Energy band diagram (iii) Fermi distribution function	(ii) Density of state [6]]
	[16] and BJT.	-

Course No: EEE UC381
Course Title: Electronic Devices & Integrated Circuits
Class: BS-III Year (EEE)

CLASS TEST-I (CLOSED BOOK)

	NoN	Name: Date: 26/10/03		
Note: Answer all the questions. Question paper contains fou questions. Used suitable data and constant from annexure 1 otherwise assume data and constant, wherever required.				
Q.1	Minority carriers are injected in N-type semiconductor sample electric field of 50V/cm is a sample and the field move these distance of 1cm in 100 μs.	at one point. An		
	Find the drift velocity and the minority carriers at room temper	diffusivity of the ature.	(10)	
Q.2	An unknown semiconductor has $N_c = N_v$. It is doped with 10^{15} where the donor level is 0.2 eV that E_F is 0.25 eV below E_C .	ner cm ³ donom		
	Calculate intrinsic concentration of electrons an semiconductor at 300 K.	ation and the id holes in the	(10)	
Q.3 (a)	A silicon is doped with 10 ¹⁶ ar Find the carrier concentration and room temperature (300K).	sinic atoms/cm ³ . I the fermi level at	(7)	
(b)	Draw the energy band diagram as fermi-level for part-a.	nd show the each	(3)	

Q.4		Write the answer in brief and to the points.	(10)
	(a)	Which PN junction (Si or Ge) has the higher potential barrier to the flow of majority carrier? Show its by characteristics curve.	(2.5)
	(b)	Draw schematic band diagram for density of state and carrier concentration for the Intrinsic semiconductor material.	(2.5)
	(c)	Draw the energy band diagram, when an electron is excited to the conduction band by optical absorption.	(2.5)
	(d)	Why vertical furnace are use in diffusion process of integrated circuits fabrication of PN junction? Name two common impurity sources for diffusion in silicon for Boron.	(2.5)

Max. Marks: 40

Roll No. ----

First Semester-2003-04

BITS, PILANI – DUBAI CAMPUS

Course No: EEE UC381

Course Title: Electronic Devices & Integrated Circuits

Class: BS-III Year (EEE)

CLASS TEST-II(OPEN BOOK)

_	Name:	
Dur Not	ation: 50 min. Date: 07/12	03
i. ii. III. IV.	Answer all the questions. Question paper contains four questions. Mentioned SET-I or SET-II on the front page of the answer sheet. Used suitable data and constants from book, otherwise assume data and wherever required.	cons
Q.1 (a) A n^+ -p junction diode doped with $N_D=10^{17} cm^{-3}$ and $N_A=5 \times 10^{14} cm^{-3}$. The p-side length and n^+ -side length of the diode are $W_p=8 \mu m$ and $W_n=50 \mu m$, respectively,	<u>.</u>
(a) (b)	•	
(d)	If the diode has a current of 1mA under a forward bias voltage of 0.5V, what is the reverse saturation current I _o of the device? Calculate the punch-through voltage of this diode under reverse bias?	
2 (a)	Calculate the "built in potential" for a silicon PN Junction with $N_a = 10^{18} \text{cm}^{-3}$ and $N_d = 10^{15} \text{cm}^{-3}$, $n_i = 9.65 \times 10^9 \text{cm}^{-3}$ at 300k.	[10
:	For an ideal MOS (metal $-SiO_2-Si$) diode having $N_a = 10^{17}$ cm ⁻³ . Calculate the maximum width of the surface depletion region at room temperature. $n_i = 9.65 \times 10^9$ cm ⁻³	[5]
	dielectric permittivity of Si = $11.9 \times 8.85 \times 10^{-14} \text{F/cm}$.	[5]

An N⁺-P junction with a long p-region has the following properties:

$$D_p=13cm^2/s$$
, $T=300k$.

Find the Electric field in the p region far from the junction.

[5]

Calculate the ideal reverse saturation current in a Si p-n junction diode with a cross-sectional area of 2x10⁻⁴cm². The parameters of the diode are:

$$\begin{array}{lll} N_A \!\!=\!\! 5X10^{16} cm^{\text{-}3}, & N_D \!\!=\!\! 10^{16} cm^{\text{-}3}, & n_i \!\!=\!\! 9.65x10^9 cm^{\text{-}3} \\ D_n \!\!=\!\! 21 cm^2 \!/s, & D_p \!\!=\!\! 10 cm^2 \!/s, & \tau_p \!\!=\!\! \tau_n \!\!=\!\! 5x10^{\text{-}7} s. \end{array}$$

$$N_D = 10^{-6} \text{ cm}^3$$
, $D_p = 10 \text{ cm}^2/\text{s}$.

$$n_i=9.65 \times 10^{9} \text{ cm}^{-3}$$

 $\tau_n=\tau_n=5 \times 10^{-7} \text{ s}.$

[5]

Q.4 Explain Why?

- (a) MOS devices are generally preferred over that BJT.
- (b) Minority carrier concentration on each side of PN junction varies with applied bias.
- (c) GaAs is used in place of Si in MESFET.
- (d) Why transistor can not be used at MW frequency.
- (e) Electron diffusion current is quite large with forward bias.

[10]

Course No: EEE UC381

Course Title: Electronic Devices & Integrated Circuits

Class: BS-III Year (EEE)

CLASS TEST-II(OPEN BOOK)

Roll No Duration: 50 min. Date: 07/12/03		
v. vi. Vii. Viii.	Answer all the questions. Question paper contains four questions. Mentioned SET-I or SET-II on the front page of the answer sheet. Used suitable data and constants from book, otherwise assume data and constants required.	onstan
Q.1 (a	Calculate the "built in potential" for a silicon PN Junction with $N_a = 10^{18} \text{cm}^{-3}$ and $N_d = 10^{15} \text{cm}^{-3}$, $n_i = 9.65 \times 10^9 \text{ cm}^{-3}$ at 300k.	re:
(b	For an ideal MOS (metal $-SiO_2-Si$) diode having $N_a = 10^{17}$ cm ⁻³ . Calculate the maximum width of the surface depletion region at room temperature. $n_i = 9.65 \times 10^9$ cm ⁻³ dielectric permittivity of $Si = 12.0 \times 8.85 \times 10^{-14}$ F/cm.	[5]
Q.2(a)	An N ⁺ -P junction with a long p-region has the following properties:	[5]
,, .	$N_a=10^{16} cm^{-3}$, $D_p=15 cm^2/s$, Current density $J=7A/cm^2$, $T=300k$. Find the Electric field in the p region far from the junction.	[5]
(b)	Calculate the ideal reverse saturation current in a Si p-n junction diode with a cross-sectional area of $2x10^{-4}$ cm ² . The parameters of the diode are:	
	$N_A=5 \times 10^{16} cm^{-3}$, $N_D=10^{16} cm^{-3}$, $n_i=9.65 \times 10^9 cm^{-3}$ $D_n=21 cm^2/s$, $D_p=12 cm^2/s$, $\tau_p=\tau_n=5 \times 10^{-7} s$.	

- Q.3 A n^+ -p junction diode doped with $N_D=10^{17} cm^{-3}$ and $N_A=5 \times 10^{14} cm^{-3}$. The p-side length and n^+ -side length of the diode are $W_p=10 \mu m$ and $W_n=50 \mu m$, respectively,
 - (a) On which side (p or n) will be the greater part of the depletion region?
 - (b) What is the width of the depletion layer under reverse bias of 3V? Assume $V_0=0.7V$.
 - (c) If the diode has a current of 1mA under a forward bias voltage of 0.5V, what is the reverse saturation current I_o of the device?
 - (d) Calculate the punch-through voltage of this diode under reverse bias?

Q.4 Explain Why?

- (a) GaAs is used in place of Si in MESFET.
- (b) Electron diffusion current is quite large with forward bias.
- (c) Minority carrier concentration on each side of PN junction varies with applied bias.
- (d) Why transistor can not be used at MW frequency.
- (e) MOS devices are generally preferred over that BJT.

[10]

[10]

Course No: EEE UC381
Course Title: Electronic Devices & Integrated Circuits
Class: BS-III Year (EEE)

QUIZ TEST-I (CLOSED BOOK-)

Roll No Name:			
Durat	ion: 15 min. Date: 2	8/10/03	
Note: Answer all the questions. Question paper contain thirteen questions.			
	Fill the blanks with appropriate/suitable words.	Mark	
Q.1	The number of distinct energy levels in atomic orbits depends on	. 1	
Q.2	Absorption of photons in the visible and IR regions called	1	
Q. 3.	What happens to energy gap when atomic spacing decreases?	1	
Q.4	The colour of the light emitted by a phosphors depends upon the	1	
Q.5	Indicate the approximate range of temperature for thermal oxidation of Si to SiO ₂ Process.	1	
Q.6	Diffusion current in SC is proportional to	1	