BITS, Pilani – Dubai Campus, Knowledge Village, Dubai. III Year First Semester 2003-2004

Degree: B.S. Branch: C.S.E.

Comprehensive Examination Question Paper

Course No: CSUC341 Course Title: Data Structures and Algorithms
Date: 08, Jan., 2004 Thursday Time: 10 a.m.- 1 Noon Total marks: 100

Data provided are complete. Closed Book.

Part A

Answer all Questions.

10 * 2 = 20 Marks

1. What is Big O Notation? Give an example.

2. What is the average case and worst case time complexity of HEAPSORT?

3. Define a Binary Tree.

- 4. Define the following methods w.r.t. a Sequence ADT:a) atRank(r)b) rankof(p)
- 5. What is Collisions in Hashing?

6. What is an AVL Tree?

7. Define the SIZE PROPERTY and DEPTH PROPERTY of a (2, 4) Tree.

8. What is a SUFFIX TRIE of a string X?

9. State the LCS (Longest Common Subsequence) Problem.

10. What is CNF - SAT (CNF Satisfiability)?

Part B

Compulsory Question

1*15 = 15 Marks

1. Trace through the successive passes (steps) of QUICKSORT for sorting the elements in ascending order for the input array A given below:

A = [42, 23, 74, 11, 65, 58, 94, 36, 99, 87]

(15 Marks)

Part C

Answer any Five Questions

5 * 13 = 65 marks

1. Write the ALGORITHM(s) to perform the following operations on a STACK:
(Assume a suitable data structure for representing a stack)

a) PUSH [Insert at least 5 strings].

b) POP [display the strings in LIFO order].

[7+6 marks]

- 2. Write the KRUSKAL's algorithm for constructing a Minimum Spanning Tree for a connected, undirected, weighted graph G. Trace through the algorithm with an example.

 [7 +6 marks]
- 3. Illustrate BFS (Breadth First Search) Traversal Technique in a Directed Graph with an example. [algorithm not required]. 13 marks

4. Explain the following cases for SPLAY Trees with an example for each: c) ZIG

a) ZIG - ZIG

b) ZIG – ZAG

[4+5+4 marks]

5. Write the Algorithm for the Fractional Knapsack Problem, using the greedy method. Trace through the above algorithm for a Test Case [example]. [8 + 5 marks]

6. The relative frequency of eight letters are given below:

6. The rela	auve nec	delicy of	CIBIII IC	ttore are 8		137	In	T	7
Letter	E	L	Y	U	C	N_	K	1	4
	124	- -	2	32	38	44	44	120	-
Rel.	24	/) 3	122	30	1 ' '	1		-
Frequency	v		1						لــ

Construct the HUFFMAN Coding Tree step by step for the above letters.

BITS, Pilani – Dubai Campus, Knowledge Village, Dubai. IIIYear First Semester 2003-2004

Degree: B.S. Branch: C.S.E.

TEST I Question Paper Makeup

Course No: CS UC341 Course Title: Data Structures & Algorithms.

Date: 12 12 50 Total marks: 20

Data provided are complete. Closed Book.

Answer all questions.

- 1. Write the Recurrence equation for the Towers of Hanoi Problem and obtain an expression for the total number of moves. [5]
- 2. Write an algorithm to perform the following:

a) Read 25 positive integers in an array.

- b) Find all pairs of elements whose sum is 25 and display them. [5]
- 3. What is the Average-Case Time Complexity of MERGESORT?
 Analyze the Worst-Case Time Complexity of MERGESORT. [5]
- 4. Explain PRE-ORDER, POST-ORDER and IN-ORDER Traversal of a Binary Tree for the following expression:

[a+(b-c)]*[(d-e)/(f+g-h)] [5]

Course File

BITS, Pilani – Dubai Campus, Knowledge Village, Dubai. IIIYear First Semester 2003-2004

Degree: B.S. Branch: C.S.E. TEST I Question Paper

Course No: CS UC341 Course Title: Data Structures & Algorithms

Date: 26, Oct., 2003 Sunday Time: 10 a.m. 10.50 a.m. Total marks: 20

Data provided are complete. Closed Book.

Answer all questions.

1. Write an algorithm to read a positive integer in Decimal System [Base 10] and convert it into an equivalent number in Hexadecimal System [Base 16].

 $\begin{array}{ccc} 26 & = & 1A \\ 10 & & 16 \end{array}$

[5 Marks]

Trace through the successive passes of MERGESORT for the following input Data:
 66, 33, 40, 22, 55, 88, 60, 11, 80, 20, 50, 44, 77, 30, 107, 308, 207, 408, 300, 200.

[5 Marks]

- 3. Define BIG O Notation? Give an example. [2]
- 4. What is a Binary Search Tree? [2]
- 5. Define Recursion. Mention any one application that uses Recursion. [2]
- 6. What are the Worst-Case and Average-Case Time Complexities of QUICKSORT? [2]
- 7. Mention the names of any four methods for the LIST ADT. [2]

BITS, Pilani – Dubai Campus, Knowledge Village, Dubai.

III Year First Semester

2003-2004

Degree: B.S. Branch: C.S.E. TEST II Question Paper

Course No: CS UC341 Course Title: Data Structures & Algorithms

Date: 30, Nov., 2003 Sunday Time: 9.30 a.m. 10.20 a.m. Total marks: 20

Data provided are complete. Closed Book.

Answer all questions.

1. Show the Successive steps of HEAPSORT for sorting the elements in ascending order for the array given below:

A = [27, 10, 16, 12, 33, 22, 44]

(5 marks)

2. Consider the Adjacency Matrix for a directed graph G shown below:

	A	В	C	D	E
A	0	0	1	0	1
В	0	0	0	0	0
C	0	0	0	1	1
D	0	1	0	0	1
E	0	1	0	0	0

a) Draw the Graph G.

[2 Marks]

- b) Using DFS, find all nodes that are reachable from D and Print them [3 marks]
- 3. Find the minimum number of multiplications required for the MATRIX Chain-Product $A = A \times A \times A \times A \times A$ step by step, $0 \times 1 \times 2 \times 3$

using Dynamic Programming or any other method. The dimensions of the Matrices are given as follows:

$$A = (2x3)$$

$$A = (3x4)$$

$$A^{0} = (4x5)$$
 $A_{0} = (5x2)$

(4 marks)

- 4. For the fractional Knapsack Problem, Write the Objective Function and the constraints. (2 marks)
- 5. Mention the names of any two fundamental methods supported by the ADT Dictionary D. (2 marks)
- 6. Define a) Hash Code b) Compression Map. (2 marks)

BITS, Pilani – Dubai Campus, Knowledge Village, Dubai. III Year First Semester 2003-2004 Degree: B.S. Branch: C.S.E.

Degree: B.S. Branch: C.S.E. QUIZ

Course No: CS UC341 Course Title: Data Structures and Algorithms Date: 17, Dec., 2003 Wednesday Time: 11 a.m.- 11.30 a.m. Total marks: 10 Weightage: 5% Venue: Room 210 Closed Book. **IDNO:** Name: Write answers in the space provided in question paper. Answer all 10 questions. Note: ____ means one or more words to be filled within a line. 1. Mention the name of the design technique / method used by the KRUSKAL's algorithm. 2. The time complexity [running time] of FLYOYD-WARSHALL algorithm for all pairs shortest paths problem with input size n is of the order of 3. The depth property in 2-4 tree states that 4. The height of an AVL TREE storing n items is of the order of 5. In a Skip List comprising of series of Lists, the special keys in the sublists are Denoted as _____ 6. Given a weighted, undirected graph G, a is a Tree T, that contains all the vertices in G and minimizes the sum of the weights of the edges of T. 7. Mention the name of the design technique / method used by the FLOYD-WARSHALL algorithm for all pairs shortest paths: 8. The size property in 2-4 tree states that every node has at most 9. In an AVL tree T, for every internal node v of T, the heights of the children of V can differ by at most 10. The average [expected] running time for searching a key k in skip-list with n items is of the order of _____

BITS Pilani – Dubai campus, Knowledge Village, Dubai. Course: CS UC341 Data Structures and Algorithms

Laboratory Assignment

Faculty: Dr. B. Vijayakumar

Evaluation: DEMONSTRATION ON 30/10/2003

LAB record should be maintained

Record should contain: Algorithm, Program Listing, and Output

Results

Record submission date: 3/11/03

- 1. Write an Algorithm and C/C++ program to perform the following:
 - a) READ in an array of N integer values.
 - b) Use QUICKSORT to sort the input array.
 - c) Display the sorted list Weightage: 5%
- 2. Write an algorithm and C/C++ program for the following problem:
 - 1. Create a Binary Search Tree to store <IDNo, Name, CGPA> for **n** students (say n=5, 20, etc).
 - 2. Perform INORDER Traversal of the above tree.

Weightage: 5%

BITS Pilani – Dubai campus, Knowledge Village, Dubai. Course: CS UC341 Data Structures and Algorithms

Laboratory Assignment

Faculty: Dr. B. Vijayakumar

Evaluation: DEMONSTRATION ON 30/10/2003

LAB record should be maintained

Record should contain: Algorithm, Program Listing, and Output

Results

Record submission date: 3/11/03

- 1. Write an Algorithm and C/C++ program to perform the following:
 - d) READ in an array of N integer values.
 - e) Use QUICKSORT to sort the input array.

f) Display the sorted list

Weightage: 5%

- 2. Write an algorithm and C/C++ program for the following problem:
 - 3. Create a Binary Search Tree to store <IDNo, Name, CGPA> for **n** students (say n=5, 20, etc).
 - 4. Perform INORDER Traversal of the above tree.

Weightage: 5%

BITS Pilani – Dubai campus, Knowledge Village, Dubai. Course: CS UC341 Data Structures and Algorithms

Laboratory Assignment

Faculty: Dr. B. Vijayakumar

Evaluation: DEMONSTRATION and VIVA

[Correctness/Modularity/Readability/VIVA: 5 Marks] ON 11/12/2003

Thursday

LAB record should be maintained

Record should contain: Algorithm, Program Listing, and Output [Algorithm: 2.5 marks Program Listing and output: 2.5 Results

marks]

Record submission date: 14/12/03

3. Write an Algorithm and **C/C++ program** to find the minimum number of multiplications needed for the Matrix Chain-Product using Dynamic Programming.

Test Cases:

INPUT

OUTPUT

1. 2, 10, 50, 20

3000

[i.e., d0, d1, d2, d3 values]

2. 2, 2, 3, 4, 5

76

[i.e., d0, d1, d2, d3, d4 values]

WEIGHTAGE: 5%