BITS,Pilani-Dubai
 International Academic City, Dubai
 Second Semester 2007-2008
 ME UC 212 Transport Phenomena I Comprehensive Examination (Closed Book)

Max. Marks: 100

Weightage: 40\%

1. Answer all the questions
2. Assume suitable data if required
3. Draw sketches where necessary

Date: 01.06.08
4. Answer the questions sequentially
1.a. Define the terms: non-uniform flow and specific weight of fluid.

b. A gate supporting water is shown in Fig 1. Find the height h.

Fig-1.
2. a.Draw the streamlines for the flow past a cylinder in the case of (i) $R_{e}<10$ and (ii) $R_{e}>10000$
b. Show that the stream lines and equipotential lines form a net of mutually
perpendicular lines.
3. A.Write the generalized x and y-momentum equations in differential form.
b. A converging elbow as shown in Fig3. turns water through an angle of $135{ }^{\circ}$ in a vertical plane. The flow cross section diameter is 400 mm at the elbow inlet and 200 mm at outlet. The elbow flow passage volume is $0.2 \mathrm{~m}^{3}$ between inlet and outlet. The water volume flow rate is $0.4 \mathrm{~m}^{3} / \mathrm{s}$ and the elbow inlet and outlet pressures are 150 kPa and 90 kPa . The elbow mass is 12 kg . Calculate the horizontal and vertical forces required to
hold the elbow in place.

4 a. What do you understand by the term: vorticity
b. A certain steady, incompressible, two-dimensional flow component

$$
u(x, y)=U\left(\frac{2 y}{a x}-\frac{y^{2}}{a^{2} x^{2}}\right)
$$

where a is constant. Find the velocity component $v(x, y)$ assuming that $v=0$ at the wall, $y=0$.
5. a. Write the Newton's law of viscosity.
b. A solid cone of maximum radius R and vertex angle 2θ (2) velocity ω. An oil of viscosity μ and thickness t fills the gap 2θ is to rotate at angular housing. Derive an expression for the torque required gap between the cone and the the bearing.
6. a. What are the assumptions made while deriving the Hagen-poiseulle equation? (2)
b. A viscous, incompressible, steady, laminar fluid flows upwards between the two vertical paraliel plates. By use of Navier Stokes equation, find the expression for the pressure gradient in the direction of flow, in terms of mean velocity.
7 a. Name the three similarities and their variables in model analysis. given by
$\mathrm{V}=\sqrt{2 g H} \phi\left[\frac{D}{H}, \frac{\mu}{\rho V H}\right]$ where

$$
\begin{array}{ll}
H=\text { head causing flow } & d=\text { diameter of the orifice } \rho=\text { density } \\
\mu=\text { viscosity of oil } & g=\text { acceleration due to gravity } \tag{8}
\end{array}
$$

8. a. Is the flow within the boundary layer rotational or irrotational? Why? gravity 0.925 and kinematic viscosity of $0.9 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$) whilly in a crude oil (specific m / s. calculate the friction drag on the plate, thickness of the which flows with velocity of 6 edge and shear stress at the trailing edge. and stress at the trailing edge.
9.a. Differentiate between the Eulerian and Lagrangian methods of representing fluid flow.
b. A two-dimensional flow field is given by potential function, $\Phi=3 x y$. Find (2) i) the stream function, ii) the velocity at points $A(2,6)$ and $B(6,6)$ and the pressure difference between the points A and B and iii) the discharge between the stream lines passing
through the points A and B. through the points A and B.
9. a. Define the terms: thermal resistance for conduction and convection
b. A surface at $250^{\circ} \mathrm{C}$ exposed to the surroundings at $110^{\circ} \mathrm{C}$ convects and radiat heat to the surroundings. The convection coefficient and emissivity values are radiates $75 \mathrm{~W} / \mathrm{m}^{2}$ ${ }^{\circ} \mathrm{C}$ and unity respectively. If the heat is conducted to the surface through a solid of conductivity $10 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$, what is the temperature gradient at the surface in the solid?

Max.Marks 20

BITS,Pilani - Dubai
 Second Semester 2007-2008
 Course: ME UC 212 Transport Phenomena I
 TEST: 2 [Open book]
 Date:04.05.08

Weightage: 20\%
Time: 50 min
Note: (i) Answer all Questions
(ii) Assume suitable value if required

1. If viscous effects are neglected and the tank is large, determine the flow rate from the tank shown in Fig 1. Assume the specific gravity of oil is 0.81 and water is 1 respectively.

2. A viscous fluid (specific Fig. 1 between two horizontal parallel plates $48 \mathrm{~N} / \mathrm{m}^{3}$, viscosity $=1.5 \mathrm{Ns} / \mathrm{m}^{2}$) is contained the plates under the action of a pressure shown in Fig 2. The fluid moves between velocity U while the bottom pressure gradient and the upper plate moves with a between the two points along the bete is fixed. The U - tube manometer connected cm . If the upper plate moves with a velocity of $6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$ at . bottom plate does the maximum velocity in the $6 \times 10^{-4} \mathrm{~m} / \mathrm{s}$ at what distance from the bottom plate does the maximum velocity in the gap between the two plates occur?

3.The two-dimensional velocity field for an incompressible, Newtonian fluid is given by

$$
u=12 x y^{2}-6 x^{3} \text { and } v=18 x^{2} y-4 y^{3}
$$

where the velocity has units of m / s when x and y are in meters. Determine the stresses $\sigma_{x y}, \sigma_{y y}$ and τ_{xy} at the point $\mathrm{x}=0.5 \mathrm{~m}, \mathrm{y}=1.0 \mathrm{~m}$ if the pressure at this point is 6 kPa and the fluid is having dynamic viscosity of $1.5 \mathrm{Ns} / \mathrm{m}^{2}$. Show these stresses on a sketch.
4. A simple flow system to be used for steady flow tests consists of a constant head tank
is connected to a length of 4 mm $0.015 \mathrm{Ns} / \mathrm{m}^{2}$, a density of $1200 \mathrm{~kg} / \mathrm{m}^{3}$ ander as shown in Fig 4. The liquid has viscosity of velocity of $2 \mathrm{~m} / \mathrm{s}$. (a)Verify the flow will be laminar (b) the atmosphere with a mean last 3 m of the tube. What is the pressure at the pressu) the flow is fully developed in the of the wall shearing stress in the fully developed region? gage? (c) What is the magnitude

BITS,Pilani - Dubai
 Second Semester 2007-2008
 Course: ME UC 212 Transport Phenomena I
 TEST: 1[Closed book]

Weightage: 25%
Date:23.03.08
Time: 50 min
Note: (i) Answer all Questions
(ii) Assume suitable value if required

1. The differential mercury manometer of shown in Fig1 is connected to pipe A containing gasoline (specific gravity $=0.65$) and the pipe B containing water. Determine the differential reading, h corresponding to pressure in A of 20 kPa and of vacuum of 150 mm Hg in B.

of marcury $=13.6$

Fig. 1
2. A wooden beam with specific gravity of 0.6 and dimension $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ and 4 m long is hinged at A as shown in Fig 2. At what angle Θ will the beam float in the water?

$$
\text { (} 6 \text { marks) }
$$

3. Incompressible fluid flows steadily through a diverging channel as shown in Fig 3. At the inlet of height H , the flow is uniform with magnitude V_{1}. At the outlet, height 2 H and velocity profile is

$$
V_{2}=V_{m} \cos \left(\frac{\pi y}{2 H}\right),
$$

where y is measured from channel centerline. Express V_{m} in terms of V_{1}.
(6 marks)

Fig. 3
4. A free jet of fluid strikes a wedge as shown in Fig 4. Of the total flow, a portion is deflected 30°, the remainder is not deflected. The horizontal and vertical components of force needed to hold the wedge stationary are F_{H} and F_{V} respectively. Fluid velocity remains constant. Determine the force ratio $\mathrm{F}_{\mathrm{H}} / \mathrm{F}_{\mathrm{V}}$.

Fig. 4 .

