PHYSICS
NOTE: Answer all the 20 questions. Each question carry 4 marks. Write the correct answer in a separate answer sheet attached with the question paper. No marks will be awarded for overwriting.

$$
\begin{aligned}
& c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} ; \mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2} ; \quad \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \cdot \mathrm{~m}^{-1} \\
& h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} ; e=1.602 \times 10^{-19} \mathrm{C} ; m_{e}=9.1 \times 10^{-31} \mathrm{~kg} ; m_{p}=1.67 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

e/m ratio

1. An electron with a speed v moves in a circle of radius r in a uniform magnetic field B.The speed of the electron is now doubled. What will be the new radius of the circular path?
2. An electron of mass m and charge e is accelerated by a potential difference ΔV enters in a magnetic field B (velocity is perpendicular to B). Write e / m in terms of $B, \Delta V$ and radius r of the circular path of electron.

Fine Structure

3. A diffraction grating with grating constant 2083 nm is illuminated by a sodium light. What is the angular position for wavelength 589 nm in third order.
4. For the above grating, if there are two yellow lines of wavelength 589 nm and 589.59 nm , what is the angular separation between them in second order.

Planck's Constant

5.In photoelectric effect if frequency of incident light decreases, what is the effect on photocurrent.
6. If intensity of incident light increases, what is the effect on stopping potential?

Single and Double Slit

7. In a double slit experiment, the distance of the screen from the slit is 52 cm , the wavelength of light used is 480 nm and the width of central maxima is 10 mm . The distance between the slits is 0.12 mm . What is the slit width?
8. In the above question what is the spacing between the consecutive maxima.

Induction of solenoids

9. An inductor has an inductance L_{0}. A second inductor identical except that it has triple the number of windings. What is the inductance of second inductor in terms of L_{0} ?
10.A solenoid of radius R, length L has total N number of turns carrying current I. What is self inductance of the solenoid?

BITS, Pilani- Dubai

Dubai International Academic City
Second Semester 2007-2008
Comprehensive Examination Answer Key
Course No. TA UC 211
Measurement Technique-1(BIOLOGY)
Maximum Marks: 40

1. The amount of blood sample required/drawn for Hb count by acid hematin method is

Ans: $20 \mu \mathrm{l}$
2. List out the various types of Leucocytes.

Ans: There are Two major types of Leukocytes- Granulocytes and Agranulocytes. Granulocytes are further divided into Three types- Neutrophils, Basophils and Eosinophils. The Agranulocytes are of Three types- Monocytes, Lymphocytes(B and T) and Natural Killer Cells.
3. For RBC count the blood is drawn up to which mark and how many times it is diluted (Dilution Factor) in the RBC dilution pipette?
$(4+1)=(2)$
Ans: 0.5 mark and 200 Dilution Factor
4. Mention the type of antibody present in 'A' type blood group?

Ans: . • B Antibodies
5. A person with AB blood group can donate blood to

Ans: AB
6. What is the wavelength of light used in spectrophotometer for protein estimation by Biuret Method?
Ans: 540 nm
7. For which experiment you have used acetocarmine in the lab and what is its role?

Ans: Acetocarmine is used as a stain for the experiment "Cell Division in Onion Root Tips" to observe the various stages of Mitotic Division. The role of Acetocarmine is to stain the nucleus of the plant cell so that the stages of Mitotic Cell division can be identified.
8. For what purpose the onion root tips are kept in $10 \% \mathrm{HCl}$ while studying mitosis?

Ans: Loosening the cell wall of plant cell to facilitate the uptake of stain/dye
9. What is the average count of WBC for an adult male and female?

Ans: $5000-10000 \mathrm{Cells} / \mathrm{mm}^{3}$
10. What is Erythroblastosis Fetalis?

Ans:
(2)

- Rh incompatibility occurs when an Rh negative mother carries an Rh positive fetus for the second time. This positive Rh factor can be inherited from the child's father.
- If the mother's blood encounters the fetus's blood through the placenta, her immune system may respond to the presence of the protein and attack it with antibodies
- .The immune reaction normally poses no threat to the woman's first child, as antibodies are not built up in time to attack the fetus's blood. But problems arise during the woman's second Rh positive pregnancy, by which time the antibodies have become strong enough to aggressively destroy the second Rh fetus's red blood cells.

11. List out the various constituents of diluting fluid used for WBC count .Give the function of each of the constituents.

Ans: The Diluting fluid used in WBC count is 2% Acetic acid with methylene blue. Meltylene blue is a basic dye which stains the nucleus of WBCs. A sample of whole blood is mixed with a weak acid solution i.e. 2% acetic acid that lyses nonnucleated red blood cells.
12. If the $3^{\text {rd }}$ division on stage micrometer coincides with 2 nd divisions of ocular micrometer, then find out the Calibration constant. (Give the formula also) Ans: 0.015
Calibration Constant $=$ No. of divisions of the stage micrometer X Least count
Corresponding no. of divisions of the eyepiece scale

$$
\begin{gather*}
=\frac{3 \times 0.01}{2} \\
=0.015 \tag{4}
\end{gather*}
$$

13. If numbers of mitotic cells are 9 and number of cells in the Interphase are 62 , what will be the duration of mitosis? Calculate.

Ans: Number of mitotic cell $=9$
Total number of cells $=9+62$

$$
=71
$$

$$
\begin{array}{ll}
\text { Mitotic index } & =\text { Number mitotic cells } \\
\text { Total number of cells }
\end{array}
$$

$$
\begin{equation*}
=9 / 71=0.126 \tag{4}
\end{equation*}
$$

Duration of Mitosis $=$ mitotic index X Duration of cell cycle
Duration of cell cycle $=19 \mathrm{Hrs}$
Duration of Mitosis $=0.12 \mathrm{X} 19 \mathrm{Hrs}=0.1 \$ \times 1.40 \mathrm{~min}$

$$
=2 \mathrm{hrs} 3 \mathrm{~s} \min =.13 \times 1140 \mathrm{~mm}
$$

$$
=2 \text { Hes } 28 \text { mes }
$$

4. Identify the given specimen and label the parts in the diagram

Pencillium sp

$$
\begin{aligned}
& \text { identification }=1 \text { mark } \\
& \text { lat el } \\
& =3 \text { mares. }
\end{aligned}
$$

15. From the values given in the table, draw a Standard Graph and find out the Unknown Protein concentration (Given that in the BSA stock 1 gm of BSA is dissolved in 100 ml of Distilled Water.)

BSA (ml)	D/W (ml)	Biuret reagent(ml)	Conc. of protein (mg)	Absorbance
0.1	0.9	2.0	0.1	0.074

0.2	0.8	2.0	0.2		0.146
0.3	0.7	2.0	0.3		0.217
0.4	0.6	2.0	0.4		0.289
0.5	0.5	2.0	0.5		0.352
Blank 0.0	1.0	2.0	0.0		0.000
Unknown	-	2.0	$?$		0.277

Ans.

conc BS (mg)
The amount of protein present in unknown. BSA IL 029

II Semester 2007-2008
COMPREHENSIVE EXAMINATION
COURSE NO.: TAUC211
TIME: 2 hrs
COURSE TITLE: Measurement Techniques-I, Physics
WEIGHTAGE: 40\% Date: 22 ${ }^{\text {nd }}$
ANSWER SHEET (MT-1, PHYSICS , TAUC211)
NAME:
ID.NO.
SEC NO

Q1.	2 r	Q10.	$\mu \mathrm{N} N^{2} \Pi R^{2} / \mathrm{L}$
Q2.	$2 \Delta \mathrm{~V} / \mathrm{B}^{2} \mathrm{t}^{2}$	Q11.	$\mathrm{f}=(1 / 2 \mathrm{~L}) \sqrt{\mathrm{F} / \mathrm{p} . \mathrm{q}}$
Q3.	58°	Q12.	1
Q4.	0.039°	Q13.	b) Damped Oscillation
Q5.	No change	Q14.	25/П
Q6.	No change	Q15.	c) momentum changes but energy remains unchanged
Q7.	$50 \mu \mathrm{~m}$	Q16.	In a straight line
Q8.	2.08 mm	Q17.	Solar energy into electricity
Q9.	9Lo	Q18.	a) only momentum is conserved
Q19.	Retentivity: Ability to retain a certain amount of residual magnetic field when magnetizing force is removed. Coercive Force: The amount of reverse magnetic field which must be applied to a magnetic material to make the magnetic flux return to zero		
Q20.	Paramagnetic material: Materials that acquire magnetization parallel to B Diamagnetic material: Materials that acquire magnetization opposite to B Ferromagnetic material: Materials that retain magnetization even after the removal of applied magnetic field.		

RECHECK REQUEST

COMPREHENSIVE EXAMINATION
COURSE NO.: TAUC211 COURSE TITLE: Measurement Techniques-I, Chemistry WEIGHTAGE: 40%

Date: $22^{\text {nd }}$ May 2008
NAME:
ID. NO SEC No....
Give the components of starch.
Amylase and amylopectin
Sucrose does not reduce the Fehling's solution. Give reasons.
Sucrase do not contain free-CHO or $-C=0$ (Ketone) groups with of on the carbon adjacent to the carbonyl group.
3 Which is more acidic, carboxylic acids or corresponding alcohols?
carboxylic acids
4. What happens when tartaric acid reacts with sodium bicarbonate solution? Give the relevant chemical equation.
$\mathrm{CO}_{2} \mathrm{gas}$ is liberated

5. Which substance is the oxidizing agent in the following reaction?

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}
$$

6. Give any 2 important aspects which you need to be aware, while performing the permaganometry titrations.
-any 2 points (I mark each)
(i) Mn^{7+} cannot be used in titrations in the presence of ions like Cl^{-}or Br^{-}
(ii) KMnO_{4} is not a primary standard, so it is to be standardized
7. Balance the following redo equation in basic medium

$$
\begin{equation*}
\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{ClO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \tag{2M}
\end{equation*}
$$

$$
\begin{array}{r}
2 \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{ClO}_{3}^{-}+4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+\mathrm{Cl}^{-}+5 \mathrm{H}_{2} \mathrm{O} \\
(1 \text { mark) }
\end{array}
$$

Steps - 1 mark
8. For the reaction, $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$ Write the correct expression for the rate of the reaction.
(2M)

$$
\begin{aligned}
& \text { rate }=K\left[\mathrm{NO}_{2}\right][\mathrm{CO}] \\
& \text { rate }=\frac{-d\left[\mathrm{NO}_{2}\right][\mathrm{CO}]}{d t}
\end{aligned}
$$

9. A hypothetical reaction $\mathbf{2 A}+\mathbf{B} \cdots \mathbf{X}+\mathbf{Y}$ has rate constant as $2.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. What is the order of the reaction?

Zero order
10. The reaction $2 \mathrm{Na}+\mathrm{Cl}_{2}$. 2 NaCl is found to follow III order kinetics, What is its molecularity?
molecularity is Tree.
Write the purpose of addition of ice cold water to the reaction mixture in the experimental determination rate of ester hydrolysis.

Arresting former hydrolysis - Ir favours determining the amos acid formed at a partientar point of time
12. If the ionization constant of an acid is 4.7 , what will be its dissociation constant?

$$
\begin{equation*}
P K_{a}=4.7, K_{a}=1.993 \times 10^{-5} \tag{2M}
\end{equation*}
$$

13. The pKa of acids A and B are 3.5 and 4.5 respectively. Which will be the strongest acid?

Acid A
14. Draw potentiometric graph and mark the stoichiometric point for the potentiometric titration of HCl Vs $\mathrm{NH}_{4} \mathrm{OH}$?

15. Which substance is used to prevent oxidation of aniline during the preparation of Acetanilide?
16. Write the chemical equation for the preparation of benzanilide and mention whether it is electrophilic substitution or nucleophilic substitution reaction.

(3M)

Nucleophilic substitution reaction
17. Refluxation and recrystalization are same or different? Give reason for your answer?
Refluxation and recrystalization are diffeconkup)
Requxation - Process of heating
Recrystallization - Purification
18. A potential difference of 12 V is applied across an method. current flowing.

$$
\begin{aligned}
& V=I \times R \\
& I=1 / 4.6
\end{aligned}
$$ resistor, determine the

19. Write the equation for the fraction of molecules ionized (α), when a weak electrolyte such as acetic acid is dissolved in water?

20. The degree of dissociation of a weak electrolyte to increases, what must be done to volume of solution?
the volume of solution (MM)
21. Calculate the K_{a} of acetic acid if its 0.05 M solution has a conductance of 7.36 mho cm^{2} at $25^{\circ} \mathrm{C}$. (λ_{α} for $\mathrm{CH}_{3} \mathrm{COOH}=390.7 \mathrm{ohm}^{-1} \mathrm{~cm}^{-2}$).

$$
\alpha=\frac{\lambda_{c}}{\lambda_{u}}=\frac{7.36}{390.7}=0.0185
$$

$K_{a}=\frac{0.05 \alpha \times 0.05 \alpha}{0.05(-x)}=\frac{1.76 \times 10^{-5} \mathrm{~mol}}{\overbrace{10^{-3} \mathrm{~g} \text { acetic acid per litre is }} / \mathrm{L}}$
22. The conductance λ of an aqueous solution of $1.0283 \times 10^{-3} \mathrm{~g}$ acetic acid per litre is $48.15 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ at $25^{\circ} \mathrm{C} ; \lambda_{\propto}$ is $390.7 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$. Calculate the degree of dissociation.

$$
\begin{aligned}
\alpha=\frac{\lambda_{c}}{\lambda_{\alpha}} \quad \alpha & =\frac{48.15}{390.7} \\
& =0.1232
\end{aligned}
$$

