CHE C221 Chemical Process Calculations

Comprehensive Examination (SOLUTION) (Closed Book)

DATE: 01-06-02008
DURATION: 3 Hours
MAXIMUM MARKS: 120
Note: Attempt ALL questions. Draw a labeled flow diagram wherever necessary, mentioning therein all the known and unknown variables. Write all assumptions and steps clearly.

Question 1 Write brief and to-the-point answers to the following questions. Answer all the parts together and in sequence.
(a) Define selectivity and yield.
(b) How standard atm (a unit of pressure) is related to psi and bar?
(c) Differentiate between fresh feed and process feed? [2]
(d) How is specific gravity defined for liquids and for gases?
(e) What are the assumptions made in calculating the average molecular weight of air?
(f) How are absolute saturation and relative saturation related? Write the formula relating the two.
(g) What is the difference between higher heating value (HHV) and lower heating value (LHV) of a fuel?
(h) How mixing of real solutions differs from that of ideal solutions in terms of energy considerations?
[2]
Solution: Consult class notes.

Question 2

A polymer blend is to be formed from the three compounds whose compositions and approximate formulas are listed in the table below. Determine the percentages of each compound A, B, and C to be mixed in a mixture to achieve the desired composition D.

	Compound (\%)			
Composition	A	B	C	Desired mixture, D
$\left(\mathrm{CH}_{4}\right)_{\mathbf{x}}$	25	35	55	30
$\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)_{\mathbf{x}}$	35	20	40	30
$\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)_{\mathrm{x}}$	40	45	5	40
Total	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$

Solution:

Basis: 1 kg -mol of mixture.
Let a, b, and c be the kg -mol of each mixture; these are unknowns.
Equations:

$$
\begin{aligned}
& 0.25 a+0.35 b+0.55 c=0.30 \\
& 0.35 a+0.20 b+0.40 c=0.30 \\
& 0.40 a+0.45 b+0.05 c=0.40
\end{aligned}
$$

Solving above equations simultaneously, $\mathbf{a}=\mathbf{0 . 6 0 , b}=\mathbf{0 . 3 5}, \mathbf{c}=\mathbf{0 . 0 5}$.

Question 3

In a process for the manufacture of chlorine by direct oxidation of HCl with air over a catalyst to form Cl_{2} and $\mathrm{H}_{2} \mathrm{O}$ (only), the exit product is composed of $\mathrm{HCl}(4.4 \%), \mathrm{Cl}_{2}(19.8 \%), \mathrm{O}_{2}$ (4.0\%), and $\mathrm{N}_{2}(52.0 \%)$. What is
(a) the limiting reactant,
(b) the percent excess reactant,
(c) The degree of completion of reaction?

Solution:

$4 \mathrm{HCl}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Component	mol \%
HCl	4.4
Cl_{2}	19.8
$\mathrm{H}_{2} \mathrm{O}$	19.8
O_{2}	4.0
$\mathrm{~N}_{2}$	52.0
Total	100.0

	Entering moles	
	$\frac{\mathrm{HCl}}{4.4}$	
$2 \times 19.8=$	$\underline{\mathrm{O}}_{\underline{2}}$	
Total	49.6	

a) $\mathrm{So}, \mathrm{HCl}$ is the limiting reactant.
b) $\%$ excess $=[13.9-(44.0 / 4)] /(44.0 / 4) * 100=26.36 \%$
c) $\%$ completion $=(44-4.4) / 44 \quad 100=\mathbf{9 0 \%}$

Question 4

(a) A synthesis gas analyzing $6.4 \% \mathrm{CO}_{2}, 0.2 \% \mathrm{O}_{2}, 40.0 \% \mathrm{CO}$, and $50.8 \% \mathrm{H}_{2}$, (the balance is N_{2}), is burned with 40% dry excess air. What is the composition of the flue gas?

Solution:

Basis: $100 \mathrm{~kg}-\mathrm{mol}$

Comp.	mol	\%
CO_{2}	46.4	13.0
$\mathrm{H}_{2} \mathrm{O}$	50.8	14.3
$\mathrm{~N}_{2}$	240.65	67.6
O_{2}	18.1	5.1
Totals	356.0	100

(b) Metallurgical-grade silicon is purified to electronic grade for use in semiconductor industry by chemically separating it from its impurities. The Si metal reacts in varying degrees with hydrogen chloride gas at $300^{\circ} \mathrm{C}$ to form several polychlorinated silanes. Trichlorosilane is liquid at room temperature and is easily separated by fractional distillation from other gases. If 100 kg of silicon is reacted as shown in the figure below, how much trichlorosilane is produced? [15]

Solution:

Si overall mol balance: $\quad 3.560=0.3571 \mathrm{D}+\mathrm{E}$
Cl overall mol balance: $\quad A=D+3 E$
H overall mol balance: $\quad A=1.7142 D+E$
(2) \& (3): $2 E=0.7142 \mathrm{D}$ $E=0.3571 D$
(1) \& (4): $3.56=0.3571 D+0.3571 D$
$D=4.9846, \quad E=1.7899, \quad A=10.3246$

(135.45 $\left.\mathrm{kg} \mathrm{HSiCl}_{3}\right)(1.78 \mathrm{~kg}-\mathrm{mol}) /\left(\mathrm{kg}-\mathrm{mol} \mathrm{HSiCl}_{3}\right)=241.1 \mathbf{~ k g ~ H S i C l} 3$

Question 5

(a) Calculate the lower heating value of methane at $100^{\circ} \mathrm{C}$.
(b) Calculate the adiabatic flame temperature of $\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})$ at 1 atm when burned with 20% excess air and the reactants enter at $25^{\circ} \mathrm{C}$.

Solution:

(a) $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Basis: 1 g -mol CH m_{4}
$\Delta H_{r x n}\left(100^{\circ} C\right)=\sum \Delta H_{\text {prod }}-\sum \Delta H_{\text {react }}$
Or

$$
\Delta H_{r x n}\left(100^{\circ} C\right)=\left[\left(\Delta h_{f, H 2 O}^{o}\right) \times 2+\left(\Delta h_{f, C O 2}^{o}\right) \times 1+\left(\Delta h_{\text {sensible,CO2 }}\right)(1)+\left(\Delta h_{\text {sensible }, H 2 O}\right)(2)\right]
$$

$-\left[\left(\Delta h_{f, C H 4}^{o}\right) \times 1+0 \times 2+\left(\Delta h_{\text {sensible, } C H 4}\right)(1)+\left(\Delta h_{\text {sensible }, O 2}\right)(2)\right]$
$=-822.66 \mathrm{~kJ}$
(b) $\quad \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+4.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Basis: $1 \mathrm{~g}-\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}$ (g)
Air in: required $\mathrm{O}_{2}=4.5 \mathrm{~g}-\mathrm{mol}$
Excess $20 \%=0.9 \mathrm{~g}-\mathrm{mol}$
Total O_{2} in $=4.5+0.9=5.4 \mathrm{~g}-\mathrm{mol}$
N_{2} in $=5.4(79 / 21)=20.31 \mathrm{~g}-\mathrm{mol}$

Reactants	g-mol	sens. Heat	heat-of-formation	$\Delta H(\mathrm{~kJ})$
$\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})$	1.0	0	20.41	20.41
$\mathrm{O}_{2}(\mathrm{~g})$	5.4	0	0	0
$\mathrm{~N}_{2}(\mathrm{~g})$	20.31	0	0	$\frac{0}{20.41}$

Products: assume $\mathbf{T}=\mathbf{2 0 0} \mathbf{K}$, consult Table D-6.

Comp.	$\mathrm{g}-\mathrm{mol}$	sens. Heat	heat-of-formation	$\Delta \mathrm{H}(\mathrm{kJ})$
$\mathrm{CO}_{2}(\mathrm{~g})$	3	$(92.466-0.912)$	-393.51	-905.87
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	3	$(73.136-0.837)$	-241.826	-508.58
$\mathrm{O}_{2}(\mathrm{~g})$	0.9	$(59.914-0.732)$	0	53.26
$\mathrm{~N}_{2}(\mathrm{~g})$	20.31	$(56.902-0.728)$	0	$\underline{\mathbf{- 2 2 0 . 3 0}}$
Assume $\mathbf{T}=\mathbf{2 5 0 0} \mathbf{~ K}$				

Comp.	g -mol	sens. Heat	heat-of-formation	$\Delta H(\mathrm{~kJ})$
$\mathrm{CO}_{2}(\mathrm{~g})$	3	$(123.176-0.912)$	-393.51	-813.74
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	3	$(98.867-0.837)$	-241.826	-431.39
$\mathrm{O}_{2}(\mathrm{~g})$	0.9	$(79.119-0.732)$	0	70.55
$\mathrm{~N}_{2}(\mathrm{~g})$	20.31	$(75.060-0.728)$	0	$\mathbf{1 5 0 9 . 6 8}$
By linear interpolation, $\mathbf{T}=\mathbf{2 1 8 0} \mathbf{K}$.		$\mathbf{3 3 5 . 1 1}$		

Question 6 (a)

One thousand pounds of $10 \% \mathrm{NaOH}$ solution at $100{ }^{\circ} \mathrm{F}$ is to be fortified to $30 \% \mathrm{NaOH}$ by adding $73 \% \mathrm{NaOH}$ at $200^{\circ} \mathrm{F}$. How much 73% solution must be used? How much cooling must be provided so that the final temperature will be $70^{\circ} \mathrm{F}$?

Solution:

Basis: 100 lb of NaOH at $100^{\circ} \mathrm{F}$

	Conc.	lb NaOH	lb H	
	O			
Initial	10%	100	900	Total
Added	73%	0.73 m	0.27 m	1000
Final	30%	$100+0.73 \mathrm{~m}$	$900+0.27 \mathrm{~m}$	m
			$1000+\mathrm{m}$	

$(100.0+0.73 \mathrm{~m}) /(1000.0+\mathrm{m})=0.30$
So, $m=465 \mathrm{lb} \mathbf{7 3} \% \mathrm{NaOH}$ added.
Reference state: Liquid water at $32^{\circ} \mathrm{F}$ under its own vapor pressure ($\Delta \mathrm{H}=0 \mathrm{Btu} / \mathrm{lb}$) Take NaOH enthalpy values from $\mathrm{H}-\mathrm{x}$ chart.
$\mathrm{Q}=\Delta \mathrm{H}=\Delta \mathrm{H}_{30 \%}-\left[\Delta \mathrm{H}_{10 \%}+\Delta \mathrm{H}_{73 \%}\right]$

Conc.	Temp.	lb soln.	ΔH, Btu/lb	ΔH, Btu
10	$100^{\circ} \mathrm{F}$	1000	61	61000
73	$200^{\circ} \mathrm{F}$	465	371	172600
30	$70^{\circ} \mathrm{F}$	1465	37	54200
$\mathrm{Q}=\Delta \mathrm{H}=\left(\begin{array}{ll}54 & 200\end{array}\right)-\left(\begin{array}{ll}61 & 000+172 \\ & 000\end{array}\right)=\mathbf{- 1 7 9}$	$\mathbf{4 0 0}$ Btu = Heat removed			

Question 6 (b)

A rotary drier operating at atmospheric pressure dries $2000 \mathrm{lb} /$ day of wet grain at $70^{\circ} \mathrm{F}$, from a moisture content of 10% to 1% moisture. The air flow is counter current to the flow of grain, enters at $225^{\circ} \mathrm{F}$ dry-bulb and $110^{\circ} \mathrm{F}$ wet-bulb temperature, and leaves at $125^{\circ} \mathrm{F}$ dry-bulb as saturated. Determine:
(a) The humidity of the entering and leaving air
(b) The water removal in pounds per hour
(c) The daily product output in pounds per day

Solution:

(a) The humidity of the entering air at $225^{\circ} \mathrm{F} \mathrm{DB}$ and $110^{\circ} \mathrm{FWB}$ is obtained from the humidity chart as, Humidity $=0.031 \mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ dry air.
Exit air humidity (saturated at $125^{\circ} \mathrm{F}$) $=0.0955 \mathrm{lb} \mathrm{H} \mathrm{O} / \mathrm{lb}$ dry air
(b) Basis: 1 hr
$\begin{gathered}10 \text { tons } \\ \text { day }\end{gathered}\left|\frac{1 \text { day }}{24 \mathrm{hr}}\right|-2000 \mathrm{lb}=835 \mathrm{lb} / \mathrm{hr}$
Water in $=(0.1)(835)=83.5 \mathrm{lb} / \mathrm{hr}$
Water out $=\frac{(0.9)(835) \mathrm{lb} \text { dry grain }}{} \left\lvert\, \frac{1 \mathrm{lb} \mathrm{H}_{2} \mathrm{O}}{99 \mathrm{lb} \text { dry grain }}=7.59 \mathrm{lb} / \mathrm{hr}\right.$
Pounds $\mathrm{H}_{2} \mathrm{O}$ removed per hr $=$ water in - water out $=83.5-7.59=75.9 \mathrm{lb}$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{hr}$
(c) Product output $=\left[(0.9)(835) \frac{\mathrm{lb} \text { dry grain }}{h r}+7.59 \frac{\mathrm{lbH}_{2} \mathrm{O}}{h r}\right]\left(\frac{24 \mathrm{hr}}{1 \mathrm{day}}\right)=18200 \mathrm{lb} /$ day

BITS, PILANI-DUBAI, Academic City, DUBAI
 Second Semester 2007-2008
 CHE UC221 Chemical Process Calculations

TEST-2
 (Open Book)

DATE: 04-05-08

DURATION: 50 MINUTES

MAXIMUM MARKS: 60

Note: Attempt ALL questions. Draw a labeled flow diagram wherever necessary, mentioning therein all the known and unknown variables. Text book by Himmelblau and Steam Tables are allowed.

1 (a) At standard conditions, a gas that behaves as an ideal gas is placed in a 4.13 L container. By using a piston the pressure is increased to 31.2 psia, and the temperature is increased to $212^{\circ} \mathrm{F}$. What is the final volume occupied by the gas?

1 (b) If a gas at $140^{\circ} \mathrm{F}$ and $30 \mathrm{in} . \mathrm{Hg}$ abs. has a molal humidity of 0.03 mole of $\mathrm{H}_{2} \mathrm{O}$ per mole of dry air, calculate:
(a) The percentage humidity,
(b) The relative humidity (\%), and
(c) The dew point of the gas (${ }^{\circ} \mathrm{F}$).

2 (a) What is the enthalpy change that takes place when 3 kg of water at 101.3 kPa and 300 K are vaporized to 15 MPa and 800 K ?

2 (b) Two gram moles of nitrogen are heated from $50^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$ in a cylinder. What is $\Delta \mathrm{H}$ for the process? The heat capacity equation is: $C_{p}=27.32+0.6226 \times 10^{-2} \mathrm{~T}-0.0950 \times 10^{-5} \mathrm{~T}^{2}$ where T is in Kelvin and C_{p} is in $\mathrm{J} /(\mathrm{g} \mathrm{mol})\left({ }^{\circ} \mathrm{C}\right)$

3 (a) Use the table of the heats of formation in Appendix F of the text book to calculate the standard heats of reaction per g -mol of the compounds produced in the following reactions:
(a) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}$ (g)
(b) $\mathrm{Fe}(\mathrm{s})+1.5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{FeCl}_{3}(\mathrm{~s})$

3 (b) The chemist for a gas company finds a gas analyses $9.2 \% \mathrm{CO}_{2}, 0.4 \%$ $\mathrm{C}_{2} \mathrm{H}_{4}, 20.9 \% \mathrm{CO}, 15.6 \% \mathrm{H}_{2}, 1.9 \% \mathrm{CH}_{4}$, and $52.0 \% \mathrm{~N}_{2}$. What would the chemist report as the gross heating value of the gas?

4 (a) The following enthalpy changes are known for reactions at $25^{\circ} \mathrm{C}$ in the standard thermo-chemical state:

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g}) \\
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathrm{C}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
\Delta H^{\circ}(\mathrm{kJ}) & =-124.0 \\
\Delta H^{\circ}(\mathrm{kJ}) & =-2220.0 \\
\Delta H^{\circ}(\mathrm{kJ}) & =-286.0 \\
\Delta H^{\circ}(\mathrm{kJ}) & =-44.0 \\
\Delta H^{\circ}(\mathrm{kJ}) & =-393.5
\end{aligned}
$$

Calculate heat of formation of propylene.
4 (b) In human body, glucose reacts as
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ (glucose) $+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+6 \mathrm{CO}_{2}(\mathrm{~g})$
How many liters of O_{2} would be required for the reaction of one gram of glucose if the conversion is 90% complete in human body? How many kJ / g of energy from glucose will be produced in the body?
Data given: Standard heat of formation (glucose) $=-1260 \mathrm{~kJ} / \mathrm{g}-\mathrm{mol}$ glucose, Assume the reaction takes place at $25^{\circ} \mathrm{C}$ and 1 atm . Assume body temperature to be $37{ }^{\circ} \mathrm{C}$.

BITS, PILANI-DUBAI, ACADEMIC CITY, DUBAI
 Second Semester 2007-2008

CHE UC221 Chemical Process Calculations

$$
\frac{\text { TEST }-1}{\text { (Closed Book) }}
$$

DURATION: 60 MINUTES

DATE: 23-03-08
MAXIMUM MARKS: 75

Note: Attempt ALL questions. Draw a labeled flow diagram wherever necessary, mentioning therein all the known and unknown variables.

1 (a) A drain cleaner contains 5.00 kg of water and 5.00 kg of NaOH . What are the mass fraction and mole fraction of each component in the drain cleaner container. Given molecular weight of $\mathrm{NaOH}=40$.

$$
[1+2=3]
$$

1 (b) Given a. 50-kg gas mixture containing $10.0 \% \mathrm{H}_{2}, 40.0 \% \mathrm{CH}_{4}, 30.0 \% \mathrm{CO}$, and $20.0 \% \mathrm{CO}_{2}$. What is the average molecular weight of the gas?
1 (c) How is specific gravity defined for liquids and for gases?
2 Methane is burned to form CO_{2} and water in a batch reactor:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
The feed to the reactor and the products obtained are shown in the flow chart
below. Find out
a) How much CH_{4} was consumed? What is fractional conversion of CH_{4} ?
b) How much oxygen was consumed? What is the fractional conversion of oxygen?
c) What is the percent excess oxygen used?
$\frac{100 \mathrm{~mol} \mathrm{CH}_{4}}{250 \mathrm{~mol} \mathrm{O}_{2}}$

Reactor \rightarrow| $40 \mathrm{~mol} \mathrm{CH}_{4}$ |
| :---: |
| $130 \mathrm{~mol} \mathrm{O}_{2}$ |
| $60 \mathrm{~mol} \mathrm{CO}_{2}$ |
| $120 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ |

3 A limestone analysis is given as
$\mathrm{CaCO}_{3} \quad 92.89 \%$
$\mathrm{MgCO}_{3} \quad 5.41 \%$
Insoluble 1.70%
Find out
a) How many kg of calcium oxide can be made from 5000 kg of this limestone?
b) How many kg of CO_{2} can be recovered per kg of limestone?
c) How many kg of limestone are needed to make 1000 kg of lime?

Antimony is obtained by heating pulverized stibnite $\left(\mathrm{Sb}_{2} \mathrm{~S}_{3}\right)$ with scrap iron and drawing off the molten antimony from the bottom of the reaction vessel:
$\mathrm{Sb}_{2} \mathrm{~S}_{3}+3 \mathrm{Fe} \rightarrow 2 \mathrm{Sb}+3 \mathrm{FeS}$
Suppose that 0.60 kg of stibnite and 0.25 kg of iron turnings are heated together to give 0.20 kg of Sb metal. Determine
a) The limiting reactant,
b) The percent of excess reactant,
c) The degree of completion (fraction),
d) The yield.

Given: molecular weights: $\mathrm{Fe}=55.85, \mathrm{Sb}=121.8, \mathrm{~S}=32.0 \quad[3+4+4+4=15]$
5 (a) A cellulose solution contains 5.2% cellulose by weight in water. How many kg of 1.2% solution are required to dilute 100 kg of 5.2% solution to 4.2% ? [5]

5 (b) A cereal product containing 55% water is made at the rate of $500 \mathrm{~kg} / \mathrm{h}$. you need to dry this product so that it contains only 30% water. How much water has to be evaporated per hour?
$6 \quad 16 \mathrm{~kg}$ of methane is burned with 300 kg air. Find out the composition of flue
gas in mole percent.

