BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

SECOND SEMESTER 2013-14 CHE F242 NUMERICAL METHODS FOR CHEMICAL ENGINEERS Comprehensive Examination (Closed Book)

Weightage: 40% Max. Marks: 40

Date: 27. 5. 2014

Time: 8.30 AM -11.30 AM

Answer all the questions.

No programmable calculators are allowed.

1. Solve $\sin x - y + 1.32 = 0$; $x - \cos y - 0.85 = 0$ by Newton-Raphson method, up to one iteration with $x_0 = 0.6$, $y_0 = 1.9$. (3M)

2. Solve $x^4 - 8x^3 + 39x^2 - 62x + 50 = 0$, using Bairstow's method, taking $p_0 = 1.97, q_0 = -1.57$ (4M)

3. Solve by Gauss-Jordan method, using partial pivoting

$$x + 7y - 3z = -22, 2x - y + 6z = 22, 5x - 2y + 3z = 18$$
 (3M)

4. Using Gauss Jacobi method, solve

$$10x + y - z = 11.19$$
, $x + 10y + z = 28.08$, $-x + y + 10z = 35.61$, correct to 3 d.p. (3M)

5. Fit a cubic spline to the data:

× X	0	1	2
у	. 1	2	5

(4M)

6. Find the dominant eigenvalue and the corresponding eigenvector of

$$\begin{pmatrix}
15 & -4 & -3 \\
-10 & 12 & -6 \\
-20 & 4 & -2
\end{pmatrix}$$
(3M)

7. Find an interpolating polynomial:

Х	-2	0	2	3
У	0	1	0.4	-1

(3M)

3. Evaluate
$$\int_{0.2}^{1.4} (\sin x - \ln x + e^x) dx$$
 by (i) Simpson's 1/3 rule and (ii) Trapezoidal rule.

Compare the results.

(3M)

9. Use the following set of Pressure-volume data to find the best possible virial constants ($A_1 \& A_2$) for the equation of the state shown below. R=0.082 and T = 303.

$$\frac{PV}{RT} = 1 + \frac{A_1}{V} + \frac{A_2}{V^2}$$

Р	0.985	1.108	1.363	1.631
V	25	22.2	18	15

(4M)

10. Solve using RK method of 4th order:

$$\frac{dy}{dx} = y - \frac{2x}{y}$$
, $y(0) = 1$ by finding $y(0.2)$ and $y(0.4)$ (4M)

11. Solve the equation by an Implicit Scheme:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 with

$$h = 0.5$$
, $u(0,t) = u(1,t) = 0$, $u(x,0) = 5 - \sin(\pi x)$, $0 < x < 1$ for one time step.

(3M)

12. Solve the Laplace equation for the following square mesh:

(3M)

All the Best!

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

SECOND SEMESTER 2013-14 CHE F242 NUMERICAL METHODS FOR CHEMICAL ENGINEERS Test 1 (Closed Book)

Weightage: 25%

Date: 03.03.2014

Max. Marks: 25 Time: 9.20 AM -10.10 AM

Answer all the questions. No programmable calculator is allowed.

- 1. Compute the relative maximum error in f when x = y = z = 1 and $f(x, y, z) = \frac{4x^2y^3}{z^4}$. Use the errors in x, y, z as 0.001. (6M)
- 2. Find a real root of $x^4 x 10 = 0$ by the secant's method which lies between 1 and 2 by performing five iterations. (6M)
- 3. Find a real root of $x e^x = \cos x$ lying between 0 and 1 by the regula-falsi formula correct to 3 d. p. (6M)
- 4. Use the Newton-Raphson method to find a negative real root of

 $\cos\left(\frac{\pi(x+1)}{8}\right) + 0.148 \ x - 0.9602 = 0$ correct to 4 d. p. Also compute the true relative percent error. (7M)

All the Best!

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

SECOND SEMESTER 2013-14 CHE F242 NUMERICAL METHODS FOR CHEMICAL ENGINEERS QUIZ 1

	Weightage: 8% Max. Marks: 8	Date: 23.03.20 Time: 9.30 AM -9.50	
	Name: ID No.:	·	
	1. Using Gauss elimination method, solve $x + z = 0.25$, $y + z = 2.5$,	x + y + z = 1.5	(2M)
	u.		
	The order of convergence of Newton-Raphson method is		(2M)
	3. Find a recurrence formula to find the square root of a positive n method.	umber N by Newton's	(2 M)
4			
	Write any two differences of partial pivoting and complete pivoting.	ng techniques used ir	1
	Gauss/Gauss Jordan methods.		(2M)