BITS PILANI DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE II SEM 2013-2014 | Evaluation Compone | nt. | COMPRE EXAM | Date/Time/Duration 01 ST JUNE 2014, 08:30am-11:30am | | | | | |--------------------|-----|--------------------------------------|--|--|--|--|--| | Course No | : | ECE/EEE/INSTR F244
ECE/INSTR C313 | Course Name : MICROELECTRONIC CIRCUITS | | | | | | Maximum Marks | : | 80 | Weightage : 40% | | | | | Note: Answer all the questions and any missing data can be assumed suitably, Answer PART A AND PART B in separate answer book #### PART A | Q.1 | Draw the circuit diagram of a Common emitter amplifier without emitter resistance using current source biasing at the emitter. Using small signal model derive the expression for the following. a) Voltage gain (Av) b) Overall Voltage gain (Gv) c) Input resistance d) Output resistance e) Short circuit current gain | 10M | |-----|--|-----| | Q.2 | a) For the following circuit shown in $Fig~I$, derive the expression for I_C , V_B , I_B , V_C , V_E b) Given $V_{CC}=V_{EE}=12V$, $I=2mA$, $R_B=200k\Omega$, $R_C=8K\Omega$, $V_{BE}=0.7~B=200$, find the values of I_C , V_B , I_B , V_C , V_E V_C V_B I_B V_{EE} V_{EE} V_{EE} | 10M | | Q.3 | Draw the small signal equivalent for the Common gate amplifier shown in Figure 2 using T model and find a) Input resistance (R_i) b) Output resistance (R_o) c) Voltage gain (A_v) d) Open circuit voltage gain (A_{vo}) e) Over all voltage gain (G_v) (Given $g_m = 1mA/V$) | | #### PART B Page 2 of 3 ## **BITS PILANI DUBAI CAMPUS** DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE II SEM 2013-2014 | Evaluation Component: | | TEST 2 (open book) | Date/Time/Duration 14-04-2014/ 8:25am to 9:15am | |-----------------------|---|--------------------|---| | Course No | : | ECE/EEE/INSTR F244 | Course Name : MICROELECTRONIC CIRCUITS | | | | ECE/INSTR C313 | | | Maximum Marks | : | 40 | Weightage : 20% | Note: Answer all the questions and any missing data can be assumed suitably, only handwritten notes and proscribed text book is allowed. Q.1 Given following Common Source MOSFET amplifier with V_t =1.5V, V_A =50V , k_n '(W/L)=0.5mA/V² - a)Draw the small signal equivalent - b)Find voltage gain A_v - c)Input resistance (Rin) - d)Find overall voltage gain Gv - e)output resistance (Rout) - Q.2 Given following MOSFET circuit 10M The MOSFET has k_n =0.25 mA/V², and V_t =2V, for R_s =0 Ω , Find - a) Drain Current ID - b) Voltage between drain and source V_{DS} - c) Region of operation of MOSFET Page 1of 2 WISH YOU GOOD LUCK Q.3 Design a current Mirror circuit shown below to get I_1 = 200 μ A and I_2 =100 μ A. Given V_1 =1V, K_n '=200 μ A/V² (W/L)₁=20. 10M **GBM** Q.4 Given following Common source amplifier, draw the high frequency small signal equivalent and find the value of unity gain frequency (f_T). Assume that MOSFET is operating saturation region, capacitance C_{db} can neglected to simplify analysis. Given the following parameters for MOSFET. t_{ox} =15nm, L=1.5nm, W=15 μ m, ϵ_{ox} =3.45x10⁻¹¹ F/m. Electron mobility (μ_n) =450cm²/V-s, V_t=0.5V J-4- ### **BITS PILANI DUBAI CAMPUS** DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE | Evaluation Compo | nent: | TEST 1 (Closed book) | Date/Time/Duration 06-03-2014/ 8:25am to 9:15am | |------------------|-------|----------------------|---| | Course No | : | ECE/EEE/INSTR F244 | Course Name : MICROELECTRONIC CIRCUITS | | | | ECE/INSTR C313 | | | Maximum Marks | : | 50 | Weightage : 25% | Note: Answer all the questions and any missing data can be assumed suitably | Q.3 | a) In the circuit shown below the voltage at the emitter was measured and found to | 6M | |----------|--|-----| | | be -0.7V. If β =50, find I_E , I_B , I_C and V_C | | | | +10V | | | | I_{c} | | | | $5k\Omega \gtrsim \downarrow$ | | | | V _c | | | | | | | | | | | | \bigvee_{E} \bigvee_{E} | | | | | | | | $10k\Omega$ \gtrsim | 1 | | | | | | | | ĺ | | <u> </u> | $-i\theta V$ b) A BJT having $eta=100$ is biased at a dc collector current of $1mA$. Find the value of | 4M | | | g_{m} , r_{e} , r_{π} at the bias point. | | | | Gim-Of-II or are present | | | Q.4 | a) Draw the circuit diagram of voltage divider bias and find the expression for I_B , I_E | 10M | | | and I_{C} , | | | | b) given $R_1 = 50k\Omega$ $R_2 = 20k\Omega$ $R_C = 5k\Omega$ $R_E = 2k\Omega$ $\beta = 100$, $V_{BE} = 0.7V$, $V_{CC} = 10V$, find the | 6M | | | values of I_B , I_E and I_C for the voltage divider biasing circuit. | | | | | | | | | |