BITS PILANI, DUBAI CAMPUS

II Semester (2013-2014)

MATHEMATICS - III (MATH F211)

Comprehensive examination (Closed book)

Time: 3 Hours Date: 26-05- 2014 Max.Marks: 120

Weightage: 40%

Answer all the questions

SECTION-A (40 Marks)

1. Solve the following linear equation $xdy + ydx = x \cos(x)dx$ (6M)

2. The equation $(1-x^2)y''-2xy'+2y=0$ has $y_1=x$ as an obvious solution. Find the general solution (8M)

3. Find the general solution of y''' - 3y'' + 4y' - 2y = 0 (6M)

4. Using operator method find only the particular solution of $y'' - 7y' + 12y = e^{2x}(x^3 - 5x^2) \tag{10M}$

5. Transform the following differential equation into a differential equation with constant coefficient and find the general solution.

 $4x^2y'' - 3y = 0 (10M)$

SECTION-B (40 Marks)

1. Solve y'' + xy = 0 using power series solution (10M)

2. Find two independent Frobenius series solutions at the regular singular point x=0 for $x^2y'' + xy' + \left(x^2 - \frac{1}{4}\right)y = 0 \tag{12M}$

3. Show that $J_{-\left(\frac{1}{2}\right)}(x) = \sqrt{\frac{2}{\pi x}} \cos(x)$ where $J_p(x)$ denotes Bessel function of order p (8M)

4. Show that $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$ and hence find $T_4(x)$ in terms of x where $T_n(x)$ is n^{th} degree Chebyshev polynomial. (10M)

SECTION-C (40 Marks)

- 1. Find the Fourier series of the function defined as f(x) = |x| for $-2 \le x \le 2$ and hence deduce the sum of the series $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ (12M)
- 2. Find eigen values and eigen functions for the following Sturm Liouville's differential equation

$$y'' + \lambda y$$
 with the boundary conditions $y(0) = 0$ and $y(\frac{\pi}{4}) = 0$ (8M)

3. By using Laplace transformation solve the differential equation

$$\frac{d^2y}{dx^2} + 4y = 4x \text{ with initial conditions } y(0) = 1 \text{ and } y'(0) = 5.$$
 (10M)

4. Find the general solution of the following liner system of differential equations

$$\frac{dx}{dt} = x - 2y$$

$$\frac{dy}{dt} = 4x + 5y$$

(10M)

BITS PILANI, DUBAI CAMPUS

II Semester (2013-2014)
MATHEMATICS - III (MATH F211)
Test II (Open book)

Time: 50 Minutes Date: 23-04- 2014

Max. Marks: 60

Weightage: 20%

Answer all the questions

1. Solve
$$3y'-y=y^4\cos(3x)$$

(10M)

2. Solve $x^2y'' + 2xy' = log(x)$ by the method of reduction of order

(10M)

- 3. Find the particular solution of the differential equation $y''-2y'+y=\frac{e^x}{(1+x^2)}$ using the method of variation of parameters (10M)
- 4. Find the complete solution of the differential equation $y'' + 3y' 28y = e^{-7x}$ by the method of undetermined coefficients (10M)

5. Solve by operator method
$$(2D^2 - D - 3)y = x^3 + x + 1$$
 (10M)

6. Solve by power series method
$$(1 - x^2)y' = 2xy$$
 (10M)

BITS PILANI, DUBAI CAMPUS

II Semester (2013-2014)
MATHEMATICS - III (MATH F211)
Test I (Closed book)

Time: 50 Minutes Date: 26-02- 2014 Max. Marks: 75 Weightage: 25%

Answer all questions

1. Find the Laplace transform of
$$f(x) = \begin{cases} \cos(x) & \text{in } 0 \le x \le \frac{\pi}{2} \\ 0 & \text{in } x > \frac{\pi}{2} \end{cases}$$
 (8M)

2. Find
$$L\left[\int_0^x e^{-x} \cos(2x) dx\right]$$
 (7M)

3. Find
$$L^{-1}\left[\frac{p+7}{p^2+10p+41}\right]$$
 (10M)

4. Find convolution of e^{-3t} and t^2 .

Also verify convolution theorem for the above given pair of functions (15M)

5. Solve
$$\mathbf{y}'' + 3\mathbf{y}' + 2\mathbf{y} = \mathbf{e}^{-3t}$$
 given $\mathbf{y}(0) = \mathbf{0}, \mathbf{y}'(0) = \mathbf{0}$ (15M)

6. Find the Fourier series of
$$f(x)= \begin{cases} 0 \ ; & -\pi \leq x < 0 \\ cos(x) \ ; & 0 \leq x \leq \pi \end{cases}$$
 where $f(x)=f(x+2\pi)$.

Also sketch the graph of f(x) between $(-3\pi, 3\pi)$ (20M)

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY SECOND SEMESTER 2013 – 2014

Date: 07.0事2014

MATHEMATICS III (MATH F211) QUIZ-II

MAXIMUM: 21 MARKS

DURATION: 20 MINUTES

NAME:	ID:	Instructor's Name:

Answer all the questions:

1. Find indicial equation and roots for the following differential equation $x^2y'' + 3\sin(x)y' + y = 0$

2. Classify the nature of singular points (with justification) for the following differential equation $(x-1)^2(x-2)^2y'' + (x-1)y' + (x-2)y = 0$

3. Find the general solution for the following differential equation near $x = 0$ in terms of Hypergeometric function	n.
4x(1-x)y'' + (6-9x)y' - y = 0	

4. Find the recurrence relation by the power series method for $y'' - (1 + x^2)y = 0$ near the ordinary point x = 0

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY SECOND SEMESTER 2013 - 2014

MATHEMATICS III (MATH F211) QUIZ-II

MAXIMUM: 21 MARKS	DURA	ATION: 2	20 MIN	UTES
	요즘 선생님			
Answer all the auestions				

1) Find indicial equation and roots for the following differential equation $x^2y'' - 3\{\cos(x) - 1\}y' - 6y = 0$

2. Classify the nature of singular points (with justification) for the following differential equation $x^2(x-4)^2y''+xy'+2y=0$

4. Find the recurrence relation by the power series method for $y'' + (1 - x^2)y = 0$ near the ordinary point x = 0

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY SECOND SEMESTER 2013 – 2014

Date: 19.03.2013

MATHEMATICS III (MATH F211) QUIZ-I

MAXIMUM: 24 MARKS

DURATION: 20 MINUTES

Answer all the questions:

1. Given
$$f(x) = \begin{cases} -\pi & ; -\pi \le x < 0 \\ x & ; 0 < x \le \pi \end{cases}$$
 (5M)

Sketch the graph of f(x) in the interval $(-\pi, \pi)$ and also find the value to which the Fourier series of f(x) converges at x=0

2. Given
$$f(x) = \begin{cases} 2 ; -\pi \le x < 0 \\ -2 ; 0 \le x \le \pi \end{cases}$$

Find the value of b_n in the Fourier series of $f(x)$

(5M)

3 Find the Integrating factor which converts the following differential equation into an exact one.

$$(2x^3y^2 + 4x^2y + 2xy^2 + xy^4 + 2y)dx + (2y^3 + 2x^2y + 2x)dy = 0$$
 (5M)

4. Solve
$$xdy + ydx = (1 - x^2)dx$$

5. A tightly stretched elastic string, tied at both ends, is distorted at time t=0 to the shape g(x); $0 \le x < 2\pi$ and then released from rest, to start vibratory movemen in the string. Write all the boundary and initial conditions of the corresponding one dimensional wave equation. (4M)