DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC CIRCUITS	
Evaluation component: COMPREHENISVE EXAMINATION	Date & Time: 10 ^{1H} JULY 2013, WEDNESDAY	
	12:30 PM - 03:30 PM	
Weightage: 40%	Max marks :80	
Duration: 3 HOURS	Note: Answer all the question,	
ANSWER PART A & PART B IN SEPARATE ANSWER	assume any missing data suitably	
BOOK		

PART A

Q.1	It is required to couple a voltage source V_s with a resistance R_s to a load R_L	[5+(1+1)+3=10M]
	via a capacitor <i>C.</i>	
	A. Derive an expression for the transfer function from source to load	
	(i.e., <i>V_L/V_S</i>).	
	B. Offering a Justification, Identify which Single Time Constant (STC)	
	i.e., either a highpass or a lowpass type is this expression?	
1	C. For $R_s = 15 \text{ k}\Omega$ and $R_L = 60 \text{ k}\Omega$, find the (smallest/largest) coupling	
	capacitor that will result in a 3-dB cut-off frequency no	
	(greater/lesser) than 500 Hz, depending on whether the transfer	
	function is, respectively, highpass/lowpass type.	
Q.2	For the common-emitter amplifier	[3+3=6M]
	shown below, let $V_{cc} = 10V$, $R_1 =$	[0 0 0]
	33 $k\Omega$, R_2 = 20 $k\Omega$, R_E = 1.5 $k\Omega$, and	
	$R_c = 2.7 \text{ kO}$ The transistor has $R = \frac{1}{2}$	
	150 and $V_A = 125 \text{ V}$.	
	A. Calculate the dc bias li w li	
	current $I_{\mathcal{E}}$.	
	B. Assuming R_{sig} = 15 k Ω and	
	R_L = 1.5 k Ω , draw the small	
	signal ac equivalent Circuit $v_{\text{sig}} \begin{pmatrix} + \\ - \end{pmatrix}$ \S_{R_2}	
	by replacing the device with $R_E = \frac{1}{2} \infty$	
	its hybrid- π : model.	
1	Tarther and the second	
Q.3	The MOSFET in the circuit of Fig. below has V_t +5 v	[6+2+3+(2+1)=14M]
Q.5	=1.5 V, K'_nW/L = 0.6 mA/V ² , and V_A = 30V. Find	[012:01(211)-1414]
	A. the values of R_0 , R_0 , and R_0 so that $I_0 =$	
	0.2 mA; if the circuit conditions are: (i)the	
	largest possible value for R_D is used	
	while (ii) a maximum signal swing at the	
i	drain of ±1.5 V is possible, and (iii)the xo-	
	input resistance at the gate is 9 M Ω .	
Ì	b. the value of gm and m at the black point.	
	C. the voltage gain from signal source to	
	load; if the circuit conditions are:	l"
	(i)terminal Z is grounded, (ii)terminal X is	
	connected to a signal source whose internal resistance is $0.8M\Omega$, and (iii)terminal Y is connected to a load	
	resistance of 30 k Ω .	
	D. The voltage gain from X to Z with Z open-circuited and also its output	
	resistance assuming terminal Y is grounded? – Also identify Configuration	
	of this Amplifier circuit.	
	of the / implinor or one.	<u> </u>

BIRLA INSTITIUE OF TECHNOLOGY AND SCIENCE PILANI, DUBAI DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC CIRCUITS
Evaluation component: COMPREHENISVE EXAMINATION	Date & Time: 10 TH JULY 2013, WEDNESDAY
	12:30 PM - 03:30 PM
Weightage: 40%	Max marks :80
Duration: 3 HOURS	Note: Answer all the question,
ANSWER PART A & PART B IN SEPARATE ANSWER	assume any missing data suitably
BOOK	

PART A

Q.1	It is required to couple a voltage source V_s with a resistance R_s to a load R_L	[5+(1+1)+3=10M]	
	via a capacitor <i>C</i> .		
	A. Derive an expression for the transfer function from source to load		
	(i.e., V_L/V_S).		
	B. Offering a Justification, Identify which Single Time Constant (STC)		
	i.e., either a highpass or a lowpass type is this expression?		
	C. For $R_s = 15 \text{ k}\Omega$ and $R_L = 60 \text{ k}\Omega$, find the (smallest/largest) coupling		
	capacitor that will result in a 3-dB cut-off frequency no		
	(greater/lesser) than 500 Hz, depending on whether the transfer		
L	function is, respectively, highpass/lowpass type. For the common-emitter amplifier v_{cc}	FO. O. O. F.	
Q.2	For the common-emitter amplifier shown below, let $V_{cc} = 10V$, $R_1 =$	[3+3=6M]	
	33 $k\Omega$, R_2 = 20 $k\Omega$, R_E = 1.5 $k\Omega$, and		
	$R_0 = 2.7 \text{ kO}$ The transistor has $R = \frac{1}{2} R_C$		
	150 and $V_A = 125 \text{ V}$.		
	A. Calculate the dc bias $i_i = i_i = i_i$		
	current $l_{\mathcal{E}}$.		
	B. Assuming R_{sig} = 15 k Ω and		
	R_L = 1.5 k Ω , draw the small		
	signal ac equivalent Circuit $v_{\text{sig}} \begin{pmatrix} + \\ - \end{pmatrix}$		
	by replacing the device with $R_E = \frac{1}{2} \infty$		
	its hybrid- π : model. $\qquad \qquad \qquad$		
Q.3	The MOSFET in the circuit of Fig. below has V_t +5 v	[6+2+3+(2+1)=14M]	
	=1.5 V, k'_nW/L = 0.6 mA/V ² , and V_A = 30V. Find		
	A. the values of R_s , R_D , and R_G so that $I_D = 0.2$ mA; if the circuit conditions are: (i)the		
	largest possible value for R_D is used		
	while (ii) a maximum signal swing at the		
	drain of ±1.5 V is possible, and (iii)the xo		
	input resistance at the gate is 9 M Ω .		
	B. the values of g_m and r_0 at the bias point.		
	C. the voltage gain from signal source to		
ĺ	load; if the circuit conditions are:		
	connected to a signal source whose		
	internal resistance is $0.8M\Omega$, and (iii)terminal Y is connected to a load		
	resistance of 30 k Ω ₁ .		
	D. The voltage gain from X to Z with Z open-circuited and also its output		
	resistance assuming terminal Y is grounded? – Also identify Configuration		
	of this Amplifier circuit.		

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC CIRCUITS	
Evaluation component: COMPREHENISVE EXAMINATION	Date & Time: 10 TH JULY 2013, WEDNESDAY	
·	12:30 PM - 03:30 PM	
Weightage: 40%	Max marks :80	
Duration: 3 HOURS	Note: Answer all the question,	
ANSWER PART A & PART B IN SEPARATE ANSWER	assume any missing data suitably	
BOOK		

PART B

Q.1 Draw the circuit diagram of MOS differential amplifier with a common mode input [10M] voltage v_{CM}. Derive an expression for V_{OV} and V_{GS}. Let $V_{DD}=V_{SS}=1.5V$, $k'_{n}(W/L)=4mA/V^{2}$, $V_{t}=0.5V$, I=0.4mA and $R_{D}=2.5k\Omega$. Find the following for MOS differential amplifier with common mode input a) V_{OV} and V_{GS} b) For $V_{CM}=0$, find $v_S(voltage at source)$, i_{D1} , i_{D2} , v_{D1} , v_{D2} c) For V_{CM} =+1V, find v_S (voltage at source), i_{D1} , i_{D2} , v_{D1} , v_{D2} لموعرا Vov = 0.316V VGS= 0.82V.

FIGURE 8.1 General structure of the feedback amplifier. This is a signal-flow diagram, and the quantities x represent either voltage or current signals.

The output x_o is fed to the load as well as to a feedback network, which produces a sample of the output. This sample x_t is related to x_o by the **feedback factor** β ,

$$x_f = \beta x_o \tag{8.2}$$

The feedback signal x_f is subtracted from the source signal x_g , which is the input to the complete feedback amplifier, to produce the signal x_g , which is the input to the basic amplifier,

$$x_i = x_s - x_t \tag{8.3}$$

Here we note that it is this subtraction that makes the feedback negative. In essence, negative feedback reduces the signal that appears at the input of the basic amplifier.

Implicit in the description above is that the source, the load, and the feedback network do not load the basic amplifier. That is, the gain A does not depend on any of these three networks. In practice this will not be the case, and we shall have to find a method for casting a real circuit into the ideal structure depicted in Fig. 8.1. Figure 8.1 also implies that the forward transmission occurs entirely through the basic amplifier and the reverse transmission occurs entirely through the feedback network.

The gain of the feedback amplifier can be obtained by combining Eqs. (8.1) through (8.3):

$$A_f \equiv \frac{x_o}{x_c} = \frac{A}{1 + A\beta} \tag{8.4}$$

The quantity $A\beta$ is called the loop gain, a name that follows from Fig. 8.1. For the feedback to be negative, the loop gain $A\beta$ should be positive; that is, the feedback signal x_f should have the same sign as x_s , thus resulting in a smaller difference signal x_i . Equation (8.4) indicates that for positive $A\beta$ the gain-with-feedback A_f will be smaller than the open-loop gain A by the quantity $1 + A\beta$, which is called the **amount of feedback**.

If, as is the case in many circuits, the loop gain $A\beta$ is large, $A\beta \gg 1$, then from Eq. (8.4) it follows that $A_f \simeq 1/\beta$, which is a very interesting result: The gain of the feedback amplifier is almost entirely determined by the feedback network. Since the feedback network usually consists of passive components, which usually can be chosen to be as accurate as one wishes, the advantage of negative feedback in obtaining accurate, predictable, and stable

8.2.1 Gain Desensitivity

The effect of negative feedback on desensitizing the closed-loop gain was demonstrated in Exercise 8.1, where we saw that a 20% reduction in the gain of the basic amplifier gave rise to only a 0.02% reduction in the gain of the closed-loop amplifier. This sensitivity-reduction property can be analytically established as follows:

Assume that β is constant. Taking differentials of both sides of Eq. (8.4) results in

$$dA_f = \frac{dA}{\left(1 + A\beta\right)^2} \tag{8.7}$$

Dividing Eq. (8.7) by Eq. (8.4) yields

$$\frac{dA_f}{A_f} = \frac{1}{(1+A\beta)} \frac{dA}{A} \tag{8.8}$$

which says that the percentage change in A_f (due to variations in some circuit parameter) is smaller than the percentage change in A by the amount of feedback. For this reason the amount of feedback, $1 + A\beta$, is also known as the desensitivity factor.

8.2.2 Bandwidth Extension

Consider an amplifier whose high-frequency response is characterized by a single pole. Its gain at mid and high frequencies can be expressed as

$$\Lambda(s) = \frac{A_M}{1 + s/\omega_H} \tag{8.9}$$

where A_M denotes the midband gain and ω_H is the upper 3-dB frequency. Application of negative feedback, with a frequency-independent factor β , around this amplifier results in a closed-loop gain $A_f(s)$ given by

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)}$$

Substituting for A(s) from Eq. (8.9) results, after a little manipulation, in

$$A_f(s) = \frac{A_M/(1 + A_M \beta)}{1 + s/\omega_H(1 + A_M \beta)}$$
(8.10)

Thus the feedback amplifier will have a midband gain of $A_M/(1+A_M\beta)$ and an upper 3-dB frequency ω_{Hf} given by

$$\omega_{Hf} = \omega_H (1 + A_M \beta) \tag{8.11}$$

It follows that the upper 3-dB frequency is increased by a factor equal to the amount of feedback

Similarly, it can be shown that if the open-loop gain is characterized by a dominant low-frequency pole giving rise to a lower 3-dB frequency ω_L , then the feedback amplifier will

have a lower 3-dB frequency ω_{LP} ,

$$\omega_{Lf} = \frac{\omega_L}{1 + A_M \beta} \tag{8.12}$$

Note that the amplifier bandwidth is increased by the same factor by which its midband gain is decreased, maintaining the gain-bandwidth product at a constant value.

8.2.3 Noise Reduction

Negative feedback can be employed to reduce the noise or interference in an amplifier or, more precisely, to increase the ratio of signal to noise. However, as we shall now explain, this noise-reduction process is possible only under certain conditions. Consider the situation illustrated in Fig. 8.2. Figure 8.2(a) shows an amplifier with gain $A_{\rm I}$, an input signal $V_{\rm s}$, and noise, or interference, $V_{\rm in}$. It is assumed that for some reason this amplifier suffers from noise and that the noise can be assumed to be introduced at the input of the amplifier. The

signal-to-noise ratio for this amplifier is

$$S/N = V_s/V_n \tag{8.13}$$

Consider next the circuit in Fig. 8.2(b). Here we assume that it is possible to build another amplifier stage with gain A_2 that does not suffer from the noise problem. If this is the case, then we may precede our original amplifier A_1 by the *clean* amplifier A_2 and apply negative feedback around the overall cascade of such an amount as to keep the overall gain constant. The output voltage of the circuit in Fig. 8.2(b) can be found by superposition:

$$V_o = V_s \frac{A_1 A_2}{1 + A_1 A_2 \beta} + V_n \frac{A_1}{1 + A_1 A_2 \beta}$$
 (8.14)

Thus the signal-to-noise ratio at the output becomes

$$\frac{S}{N} = \frac{V_s}{V_n} A_2 \tag{8.15}$$

which is A_2 times higher than in the original case.

We emphasize once more that the improvement in signal-to-noise ratio by the application of feedback is possible only if one can precede the noisy stage by a (relatively) noise-free stage. This situation, however, is not uncommon in practice. The best example is found in the output power-amplifier stage of an audio amplifier. Such a stage usually suffers from a problem known as power-supply hum. The problem arises because of the large currents that this stage draws from the power supply and the difficulty in providing adequate power-supply filtering inexpensively. The power-output stage is required to provide large power gain but little or no voltage gain. We may therefore precede the power-output stage by a small-signal amplifier that provides large voltage gain, and apply a large amount of negative feedback, thus restoring the voltage gain to its original value. Since the small-signal amplifier can be fed from another, less hefty (and hence better regulated) power supply, it will not suffer from the hum problem. The hum at the output will then be reduced by the amount of the voltage gain of this added preamplifier.

8.2.4 Reduction in Nonlinear Distortion

Curve (a) in Fig. 8.3 shows the transfer characteristic of an amplifier. As indicated, the characteristic is piecewise linear, with the voltage gain changing from 1000 to 100 and then to 0. This nonlinear transfer characteristic will result in this amplifier generating a large amount of nonlinear distortion.

The amplifier transfer characteristic can be considerably linearized (i.e., made less non-linear) through the application of negative feedback. That this is possible should not be too surprising, since we have already seen that negative feedback reduces the dependence of the overall closed-loop amplifier gain on the open-loop gain of the basic amplifier. Thus large

To illustrate, let us apply negative feedback with $\beta = 0.01$ to the amplifier whose open-loop voltage transfer characteristic is depicted in Fig. 8.3. The resulting transfer characteristic of the closed-loop amplifier is shown in Fig. 8.3 as curve (b). Here the slope of the steepest segment is given by

$$A_{f^{\dagger}} = \frac{1000}{1 + 1000 \times 0.01} = 90.9$$

and the slope of the next segment is given by

Q.4

$$A_{f2} = \frac{100}{1 + 100 \times 0.01} = 50$$

Thus the order-of-magnitude change in slope has been considerably reduced. The price paid, of course, is a reduction in vortice gain. Thus if the overall gain has to be restored, then a preamplifier should be added. It is preamplifier should not present a severe nonlinear-distortion problem, since it will be dealing with smaller signals.

Finally, it should be noted that negative feedback can do nothing at all about amplifier saturation, since in saturation the gain is very small (almost zero) and hence the amount of feedback is also very small (almost zero).

a) Draw the circuit diagram of Class B output stage amplifier and derive the expression for Power conversion efficiency.

[5+5=10M]

- ➤ Complementary Pair (an npn, Q_N and a pnp,Q_P)
- ightharpoonup PUSH PULL Operation Only one conducts at a time Q_N pushes (sources) into load Q_P pulls (sinks) from load
- > Biased at zero perrent active devices conduct only when signal is present

$$\begin{split} \eta = & \left(\frac{1}{2} \frac{V_{o-peak}^2}{R_L}\right) \div \left(\frac{2}{\pi} \frac{V_{o-peak}}{R_L} V_{cc}\right) \\ = & \frac{\pi}{4} \frac{V_{o-peak}}{V_{cc}} \Longrightarrow \eta_{max} = 78.5\% \\ P_{Dmax} = & \frac{2}{\pi^2} \frac{V_{cc}^2}{R_L} \end{split}$$

- b) A BJT is specified to have a maximum power dissipation P_{D0} of 3W at an ambient temperature T_{A0} OF $25^{\circ}C$, and maximum junction temperature T_{Jmax} = $200^{\circ}C$. Find the following
- i. The thermal resistance θ_{JA}
- ii. The maximum power that can be safely dissipated at an ambient temperature of 200C
- iii. The junction temperature if the device is operating at T_A =30 O C and is dissipating 0.5 $^{\circ}$ 7 of power.

i)
$$\theta_{JA} = \frac{T_{Jmax} - T_{A0}}{P_{D0}} = \frac{200 - 25}{3} = 58.33^{\circ} C/W$$

ii)
$$P_{Dmax} = \frac{T_{Amax} - T_{A}}{\theta_{JA}} = \frac{200 - 60}{58.33} = 2.4W$$

iii)
$$T_J = T_J + \theta_{JA} P_D = 30 + 58.33 \times 0.5 = 59.16^{\circ} C$$

min value of C = 4.84nF.

Q2).
$$V_{cc} = 10V$$
; $R_1 = 33K\Omega$; $R_2 = 20K\Omega$; $R_E = 1.5K\Omega$ $R_{cc} = 2.7K\Omega$
 $R = 150$, $V_A = 125V$
 $R = 15K\Omega$; $R_L = 1.5K\Omega$.
Q) $I_E = V_{BB} - V_{BE}$
 $R_E + R_B/(B+1)$
where $V_{BB} = V_{CC}$; $R_2 = 10.20K$ = $3.77V$
 $R_1 + R_2 = 331120 = 12.45K\Omega$
Thus $I_E = \frac{3.77}{1.5K + 12.45}$ = $1.94mA$.
 $I_{CE} = \frac{3.77}{1.5K + 12.45}$ = $1.94mA$.
 $I_{CE} = \frac{3.77}{1.5K + 12.45}$ = $1.94mA$.

$$g_{m} = \frac{J_{c}}{V_{T}} = \frac{\sqrt{2}E}{V_{T}} = \frac{0.99 \times 1.94}{0.025} \approx \frac{46.8 \text{mA}}{V}$$

$$A\pi = \frac{B}{9m} = \frac{150}{76.8 \times 10^{3}} \approx 1.953 \text{ K-}2$$

$$\Lambda_0 = \frac{V_A}{I_C} = \frac{125}{0.99 \times 1.94 \times 10^3} = 65.08 \times 10^3 \Omega$$

a)
$$\int_{0}^{1} = 0.2 \times 10^{3} = \frac{1}{2} \times 0.6 \times 10^{3} \times 10^{3} = 0.8161$$

 $V_{q} = 1.5 + 0.816 = 2.316.V$
 $V_{q} = 0 \Rightarrow V_{s} = -2.316V$
 $R_{s} = -2.316 - (-s) = 13.42 \times 12$

Lougest possible RD is achieved for Vosmin

$$R_{G} = 10M\Omega$$
 = 1.5+ 0.816 = 2.316 V = $R_{D} = \frac{5-2.316}{0.2} = 13.42K\Omega$

b)
$$g_{m} = \frac{2\Omega_{D}}{V_{OV}} = \frac{2\times0.2}{0.816} = 0.49 \text{ mA/} \quad j_{NO} = \frac{V_{A}}{J_{D}} = \frac{30}{0.2} = 150 \text{ K.D.}$$

c) If z is grounded then the ext becomes a common -source config. the voltage gain according to Eq. 4.82.

d) if y is grounded, then the ckt becomes a source follower config Eq. 4.103 Av. = $\frac{70}{50+\frac{1}{50+1}} = 0.986 \text{ V/V}$

$$C_{\mu} = \frac{C_{\mu o}}{(1+V_{oc})^{2.5}} = \frac{45 \, fF}{(1+\frac{2.5}{0.6})^{0.5}} = 19.79 \, fF$$

Which is T.F. of the high pass STC type (see Table 1.2 of Text)

K = RL

RL+Rs ; Wo = C(RL+Rs)

$$27 \times (R_{1}R_{1})$$
 ≤ 500
 $27 \times (R_{1}R_{1}) \times 10^{3}$
 $C \geq 37 \times 500 \times (60 + 15 \times 10^{3})$
 $C \geq 4 \cdot 24 + 15^{9} = 10^{15}$

min value of C = 4.84nF.

QD)
$$V_{cc} = 10V$$
; $R_1 = 33K\Omega$; $R_2 = 20K\Omega$ $R_E = 1.5K\Omega$ $R_c = 2.7K\Omega$
 $R = 150$; $V_A = 125V$
 $R_S = 15K\Omega$ $R_L = 1.5K\Omega$.
Q) $I_E = V_{BB} - V_{BE}$
 $R_E + R_B/(B+1)$
where $V_{BB} = V_{ce}$ $R_2 = 10 \cdot \frac{20K}{33K+20K} = 3.77V$
 $R_B = R_1 || R_2 = 33 || 20 = 12.45K\Omega$
Thus $I_E = \frac{3.77 - 0.7}{1.5K + 124K} = 1.94MA$

$$g_{m} = \frac{\int_{C}}{V_{T}} = \frac{\sqrt{2}E}{V_{T}} = \frac{0.99 \times 1.94}{0.025} = \frac{76.8 \text{ mA}}{V}$$

$$AR = \frac{B}{9m} = \frac{150}{76.8 \times 10^{5}} = 1.953 \text{ K-2}$$

$$N_0 = \frac{V_A}{I_C} = \frac{125}{0.99 \times 1.94 \times 10^3} = 65.08 \times 10^3 \Omega$$

a)
$$\int_{0}^{1} = 0.2 \times 10^{3} = \frac{1}{2} \times 0.6 \times 10^{3} \times 10^{3} = 0.8161V$$

$$V_{GS} = 1.5 + 0.816 = 2.316.V$$

$$V_{GS} = 0 \Rightarrow V_{SS} = -2.316V$$

$$R_{SS} = -2.316 - (-5)$$

$$0.2 = 13.42 \times 12$$

Largest possible RD is achieved for Vosmin

b)
$$g_{m} = \frac{2\hat{I}_{D}}{6v} = \frac{2\times0.2}{0.816} = 0.49 \text{ mA/V} ; R_{0} = \frac{V_{A}}{I_{D}} = \frac{30}{0.2} = 150 \text{ K.D.}$$

c) If z is grounded then the ckt becomes a common -source config. The voltage gain according to Eq. 4.82.

d) if y is grounded, then the ckt becomes a source blower config Eq. 4.103 Av. = $\frac{v_0}{v_0 + \frac{150}{4}} = \frac{150}{150 + \frac{1}{2}} = 0.986 \text{ V/V}$

$$C_{h} = \frac{C_{h0}}{(1+V_{0c})^{1/2}} = \frac{45 fF}{(1+\frac{2.5}{0.6})^{0.5}} = 19.79 fF$$

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC CIRCUITS	
Evaluation component: TEST-2 (OPEN BOOK)	Date & Time: 12-05-2013, SUNDAY,	
, , ,	10:15AM TO 11:20 AM	
Weightage: 20%	Max marks :40	
Duration: 50 Minutes	Note: Answer all the question,	
ANSWER PART A & PART B IN SEPARATE ANSWER	assume any missing data suitably	
BOOK		

PART A

- Q.1 An overdrive voltage for an NMOS differential amplifier is 0.4V and has a W/L $^{2.5\times2+2\times2=9M}$ ration of 60, $\mu_n C_{ox} = 200 \mu A/V^2$, $V_A = 10V$ and $R_D = 5k\Omega$, Find bias current (I), Transconductance (g_m), output resistance (r_o) and differential gain (A_d).
- Q.2 Find the values of resistance R₁ to R₇ for the following BJT op-amp circuit shown 1.5x6+2=11M below

PART B

Q.1 The basic 2-stage CMOS OP-AMP, shown in figure below, is fabricated in a process for which $V'_{An}=|V'_{Ap}|<15V/\mu m$. If all the devices are of 1.25 μ m long; $V_{OV1}=0.3V$; and $V_{OV6}=0.6V$ Find:

i. both individual stage gains and the overall gain.

- ii. the OPAMP output resistance obtained when the second stage is biased at 0.6mA
- iii. the value of C_C that results in unity-gain frequency, f_t =120MHz assuming: (i)a 250 Ω resistance is included in series with Cc and (ii)trans-conductance of 1st and 2nd stages, respectively are: 1.5mA/V and 2.5mA/V.

2+2+4=8M

Q.2 The amplifier shown in figure below is biased to operate at $I_D=2mA$; and $g_m=2mA/V$. Neglecting r_o , find

2+3+3=8M

- a) the mid-band gain and
- b) the value of C_S that places f_L at 20Hz.
- c) the amplifier's f_H , assuming an R_L =10K Ω is connected at the output. Assume "reasonable/most appropriate" values for the MOSFET parameters including internal capacitances by explicitly indicating needed values assumed.

2+1+1=4M

- Q.3 The current source circuit shown in Fig. below utilizes a pair of matched pnp transistors having $I_S=10^{-15}$ A, $\beta=75$ and $|V_A|=45V$. It is required to design the circuit to provide an output current $I_O=1.5$ mA at $V_O=3V$.
 - i. What values of IREF and R are needed?
 - ii. What is the maximum allowed value of V₀ while the current source continues to operate properly?
 - iii. What change occurs in I_0 corresponding to V_0 changing from the maximum positive value of -5V?

Given
$$V_{OV} = 0.4V$$
; $\frac{W}{L} = 60$; $M_{N}C_{OE} = \frac{1}{200MN}V^{2}$
 $R_{D} = 5 \text{ k.r.}$; $V_{A} = 10V$

Bias wortest

 $V_{OV} = \sqrt{\frac{I}{k_{N}}(\frac{W}{L})}$; $0.4V = \sqrt{\frac{I}{k_{N}}(\frac{60}{L})}$
 $0.4V = \sqrt{\frac{I}{200MN}} = 1.92 \text{ mA} \approx 2 \text{ mA}$

Output resistance

 $9m = \frac{I}{V_{OV}}$; $V_{O} = \frac{V_{A}}{I/2} = \frac{10}{1mA} = 10 \text{ k.r.}$
 $9m = \frac{2mA}{0.4V}$

Tronsconductonce

 $9m = \frac{2mA}{0.4V} = \frac{5mA}{V}$

Differential Grain

 $A_{A} = 9m \left(\frac{R_{D}||V_{O}}{I}\right) = \frac{5mA}{V} \left(\frac{5 \text{ k.r.} \times 10 \text{ k.r.}}{5 \text{ k.r.} + 10 \text{ k.r.}}\right)$
 $= \frac{5 \times 50}{15} = 16.66$
 $A_{A} = 20 \log_{10} \left(\frac{16.66}{I}\right) = 24.43 \text{ d.g.}$

 $-\infty$

Voltage at the base of Qg is 0-7 at the base of Qg from KVL, we get -0.7 + 1 mA ×R5-10=0

Rs = 10-7 Ks2 4

1.51

Similarly at Q_8 , from KVL, we get -0+5 mA $\times R_6-10=0$

R6 = 10 = 2KI

-l·5H

at Qq, opplying KVL, we get

1 m A x R 7 + 0.7 - 10 = 0

 $R_{7} = \frac{9.3}{1 \text{ mA}} = 9.3 \text{ kg}$

1.5M

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC	
	CIRCUITS	
Evaluation component: TEST-2 (OPEN BOOK)	Date & Time: 12-05-2013, SUNDAY,	
	10:15AM TO 11:20 AM	

PART B

Solution for Q. No.1:

Page No.1/2

The basic 2-stage CMOS OP-AMP The basic 2-stage CMOS OP-AMP, shown in

figure below, is fabricated in a process for which $V'_{An} = |V'_{Ap}| < 15$ V/ μ m. If all the devices are of 1.25 μ m long; V_{OV1}=0.3V; and V_{OV6}=0.6V

Find:

a) both individual stage gains and the overall gain can be computed employing the given data and using the relations in Eqn

Nos.9.11, 9.12 and 9.13 of the prescribed Text Book:

 $A_1 = -g_{m1} (r_{o2}||r_{o4}) = -2/V_{A1}/\{(1/|V_{A2}|) + (1/|V_{A4}|)\};$ $A_2 = -g_{m6}(r_{o6}||r_{o7}) = -2/V_{A1}/\{(1/|V_{A6}|) + (1/|V_{A7}|)\}$

and overall gain is A₁*A₂.

- b) when the second stage is biased at i.e., I_{D6} =0.6mA, the OPAMP output resistance can be obtained using the relation as in Eqn. No.9.16 of the prescribed text book; which is: r_{o6} =| V_{A6} |/ I_{D6} .
- Using the relations in Eqn. 9.16; 9.27 and 9.37 of the prescribed Text book, the value of C_C that results in unity-gain frequency, f_t =120MHz assuming: (i)a 250 Ω resistance is included in series with Cc and (ii)transconductance of 1st and 2nd stages, respectively are: 1.5mA/V and 2.5mA/V;

Solution for Q. No.2:

The amplifier shown in figure below is biased to operate at I_D =2mA; and g_m =2mA/V. Neglecting r_o ,

a) the mid-band gain and Given that: $I_D=2$ mA; $g_m=2$ mA/V; Prescribed Book page No.311 Eqn. No.4.89 is: $A_M = -\frac{g_{mR_D}}{1+g_{mR_S}} = -\frac{2x10}{1+2x6} = 1.5384 \, V/V$

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

ODOOND OBMEDIBLE 2012		
Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC	
	CIRCUITS	
Evaluation component: TEST-2 (OPEN BOOK)	Date & Time: 12-05-2013, SUNDAY,	
	10:15AM TO 11:20 AM	

b) the value of C_S that places f_L at 20Hz.

 V_{0max} is 5 - V_{CEsat} = 5 - 0.3 = 4.7V.

Page No.2/2

Assuming that C_{c1} or C_{c2} are infinity and thus the low frequency is response is only due to R_{S} and

C_S:
$$f_L = \frac{1}{2\pi(\frac{1}{g_m}||R_S)C_S} = 20Hz$$

Here the R contributing to the high frequency pole is: $R_{eq} = R_S ||R_{out}$, in which $R_{out} = r_0 || (1/g_m)$ following the Eqn.4.105 on page 318 and/or using Fig.4.51 of prescribed text. Student can assume $r_0 = \infty$ i.e., an ideal MOS, Cs can be found using above eqn.

c) Assuming an R_L=10K Ω is connected at the output and the by using the values of MOSFET parameters of the prescribed text Example No. 4.12 on page 331-332, the amplifier's f_H,can be determined using the expression for the same (as on page 332 of prescribed text: $f_H = \frac{1}{2\pi(R_{sig}||R_G)C_{in}} = \frac{1}{2\pi(C_{gs}+[1+g_m(R_D||R_L||r_0)C_{gd}])R_{sig}||R_G}$

Solution for Q. No.3

Matched pnp transistors of the circuit shown in Fig. has: $I_S=10^{-15}$ A, $\beta=75$ and $|V_A|=45V$. To design the circuit such that its output current $I_0=1.5$ mA at $V_0=3V$:

- a) I_{REF} can be computed using $I_0 = \frac{I_{REF}}{1 + \frac{2}{\beta}}$; the needed can be computed from the relations: $R = \frac{V_C}{I_{REF}} = \frac{V_{CC} V_{C/B}}{I_{REF}}$ in which: $V_B = V_{BE}$ $= V_T \ln \frac{I_0}{I_S \left\{ 1 + \frac{V_{CE}}{V_A} \right\}}$
- b) the maximum allowed value of V_O while the current source continues to operate properly V_{Omin} occurs when Q_2 is on the edge of saturation or V_{CC} =0.3V. Therefore,
- c) Change that occurs in I_O corresponding to V_O changing from the maximum positive value of $-V_{CC}(=-5V)$ can be computed by solving the relationship: $r_0 = \frac{V_A}{I_0} = \frac{\Delta v_0}{\Delta I_0} = \frac{v_{Omax} (-V_{CC})}{\Delta I_0}$ compute from it the value of: $\frac{\Delta I_0}{I_0} \times 100$.

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC CIRCUITS	
Evaluation component: TEST-1	Date & Time: 21-03-2013, THURSDAY,	
	11:15AM TO 12:05 PM	
Weightage: 25%	Max marks :50	
Duration: 50 Minutes	Note: Answer all the question,	
ANSWER PART A & PART B IN SEPARATE ANSWER	assume any missing data suitably	
BOOK		

PART A

- Q.1 Draw the circuit diagram of the single stage CE BJT amplifier and using its small [1.5+1.5+2x6=15M] signal equivalent model derive an expression for the following
 - I. Input resistance
 - II. Output resistance
 - III. Voltage gain
 - IV. Open circuit voltage gain
 - V. Overall voltage gain
 - VI. Short circuit current gain
- $_{\sim}$.2 For the circuit shown below, draw a complete small-signal equivalent circuit utilizing an appropriate T model for the BJT (α =0.99), Your circuit should show the values of all components, including the model parameters. What is the input resistance R_{in}? Calculate the overall voltage gain?

[3+3+2+2=10M]

Q.1 Sketch the complete hybrid- π model (valid at high-frequencies also) of an npn transistor. Compute the values of C_{π} and C_{μ} .

[3+2.5x2=8M]

Assume: the npn transistor is operated at $I_C = 0.5$ mA and $V_{CB} = 2$ V and has (i)low-frequency value of β (β ₀) = 100, (ii)Early Voltage, $V_A = 40$ V, (iii)Forward base-transit time, $\tau_F = 25$ ps, (iv)Base -Emitter Junction (EBJ) Capacitance at zero voltage, $C_{je0} = 15$ fF, (v)Collector Base Junction (CBJ) Capacitance at zero voltage, $C_{\mu 0} = 25$ fF, (vi)Collector-Base Junction (CBJ) built-in Voltage, $V_{0c} = 0.7$ V, (vii)grading coefficient, $M_{CBJ} = 0.5$, and (viii)Base spreading resistance, $T_X = 110\Omega$.

PART B

Q.2 By employing a 10A current in the voltage divider of the circuit of Fig. shown, in order to operate the MOS transistor in saturation with V_D biased 1 V from the edge of the triode region, with I_D =I mA and V_D = 3 V, find the values of all the resistors and voltages indicated in the figure.

[1x4+1x3=7M]

Assume: $|V_t| = 1 V$ and $k'_pW/L = 0.6 \text{ mA/V}^2$.

- Q.3 The source follower of Circuit shown in Fig. employs a MOSFET biased to have $g_m = 5$ [1+3+2x3=10M] mA/V and r_0 =20 k Ω .
 - I. Draw the small signal equivalent model
 - II. Derive the expression for overall voltage gain
 - III. Find
 - a. the open circuit voltage gain, Avo
 - b. the output resistance (R_{out}).
 - c. the voltage gain if $R_L = 1.5 \text{ k}\Omega$

PART-A

Let us determine Input resistance , voltage gain and output resistance by replacing the BJT with its hybrid π small signal model.

At the amplifier input we have
$$R_{la} \equiv \frac{v_l}{l} = R_p \parallel R_{dr}$$

where R_{ib} is the input resistance looking into the base. Since the emitter is grounded,

$$R_{ib} = r_{x}$$

Normally, we select $R_B \gg r_{\pi}$, with the result that

 $R_{\rm in}\cong r_\pi$

The fraction of source signal u_{sig} that appears across the input terminals of the amplifier proper can be found from

$$v_i = v_{\text{sig}} \frac{R_{\text{to}}}{R_{\text{in}} + R_{\text{sig}}} = v_{\text{sig}} \frac{(R_B \parallel r_\pi)}{(R_B + r_\pi) + R_{\text{sig}}}$$

which for $R_B \gg r_{\pi}$ becomes

$$v_i \cong v_{\rm sig} \frac{r_\pi}{r_\pi + R_{\rm sig}}$$

we note that

$$v_{\pi} = v_{i}$$

At the output of the amplifier we have $v_o = -g_m v_\pi(r_o \parallel R_C \parallel R_L)$

Replacing v_x by v_t we can write for the voltage gain of the amplifier proper; that is, the voltage gain from base to collector,

$$A_v = -g_m(r_o \parallel R_C \parallel R_L)$$

The open-circuit voltage gain A_{vo} can be obtained by setting $R_L = \infty$ $A_{vo} = -g_m(r_o \parallel R_C)$

since typically $r_o \gg R_C$, resulting in

$$A_{vo} \cong -g_m R_C$$

The output resistance $R_{\rm out}$ can be found from the equivalent circuit by looking back into the output terminal while short-circuiting the source $v_{\rm sig}$. Since this will result in $v_{\pi}=0$, we see that

$$R_{\text{out}} = R_C \parallel r_o$$

$$r_o \gg R_C$$

 $R_{\mathrm{out}} \cong R_{C}$ unilateral amplifier $R_{o} = R_{\mathrm{out}}$, voltage gain A_{v} corresponding to any particular R_{L} , $A_{v} = A_{vo} \frac{R_{L}}{R_{L} + R_{o}}$

The overall voltage gain from source to load, G_v , can be obtained by multiplying $(v_i/v_{\rm sig})$ by A_v

$$G_v = \frac{(R_B \parallel r_\pi)}{(R_B \parallel r_\pi) + R_{\text{sig}}} g_m(r_o \parallel R_C \parallel R_L)$$

For the case $R_B \gg r_\pi$, this expression simplifies to

$$G_v \equiv -\frac{\beta(R_C \parallel R_L \parallel r_o)}{r_\pi + R_{\text{sig}}}$$

if $R_{\rm sig} \gg r_m$, the overall gain will be highly dependent on β .

This is not a desirable property since β varies considerably between units of the same transistor type.

if $R_{\text{sig}} \ll r_{\pi}$, we see that the expression for the overall voltage gain reduces to $G_v \cong -g_m(R_C \parallel R_L \parallel r_o)$

which is the gain A_v ; in other words, when R_{sig} is small, the overall voltage gain is almost equal to the gain of the CE circuit proper, which is independent of β .

short-circuit current gain, A_{ts} This can be easily done by referring to the amplifier equivalent circuit

 R_L is short circuited, the current through it will be equal to $-g_m v_{\pi}$,

$$i_{os} = -g_m v_\pi$$

Since v_{π} is related to i_l by $v_{\pi} = v_l = i_l R_{\text{in}}$

the short-circuit current gain can be found as

$$A_{ls} = \frac{i_{os}}{i_i} = -g_m R_{in}$$

$$R_{\rm in} = R_B \parallel r_{\pi} \qquad R_B \gg r_{\pi},$$

 $|A_{is}|$ reduces to β , by definition, the short-circuit current gain of the common-emitter configuration.

PART-A

02: given 2=0.99

Small signal equivolent circuit using-T model es

$$i_e = \frac{-v_{sig}}{R_s + R_e} = \frac{-v_{sig}}{100}$$

$$\frac{190 = -0.99 \text{ i.e.} \times \frac{10 \text{ kn} \times 10 \text{ kn}}{10 + 10}}{10 + 10} = \frac{5 \text{ kn}}{10 \text{ kn}} = \frac{5 \text{ kn}}{10 \text{ kn}} = \frac{100 \text{ kn}}{100} = \frac{1000 \text{$$

7ES7-1

Microelectronic Circuits Answer key for PARTB

Q.1 High Frequency hybrid - model

Emitter-base capacitance, Cx = Cde Cje

Given, $T_r = 25ps$, $T_c = 0.5mA$ and $V_7 = 25mV(at *com temp)$

$$C_{de} = 25 \times 10^{-5} \times 0^{-5} \times 10^{-3} = 0.5 pF$$

$$C_{fe} = 2C_{fe0}$$

$$= 30 fF$$

$$C_{fe} = C_{fe0}$$

$$C_{fe} = 0.5 pF + 0.003 pF = 30 fF$$

$$C_{fe} = 0.5 0.3 pF$$

$$C_{fe} = C_{fe0}$$

$$C_{fe} = 0.5 0.3 pF$$

$$C_{fe} = C_{fe0}$$

$$C_{fe} = 0.5 0.3 pF$$

$$C_{fe} = C_{fe0}$$

$$C_{fe} = 2C_{fe0}$$

$$C_{fe} = 2C_{fe0}$$

$$C_{fe} = 30 fF$$

$$C_{fe} = 30 fF$$

$$C_{fe} = 2C_{fe0}$$

$$C_{fe} = 30 fF$$

$$C_{fe} = 30 f$$

Given Cuo = 25ff, Vos = 24, Vos = 0.74, m = 0.5

$$G_{\mu} = \frac{25 \times 10^{-15}}{\left[1 + \frac{2}{0.7}\right]^{0.5}}$$

tarigo, actalivirtes trafiscint a capación a conoció de la cincación de la conoció de la conoció de la conoció

```
Given \mathcal{I}_0 = I \xrightarrow{M} A, V_0 = 3V
                R_D = \frac{V_D}{2\pi} = \frac{3k_A}{2\pi}
   to A current in voltage divider
               R_1+R_2=\frac{10V}{10A}=\frac{1.0}{10A}
  To operate MOS transistor in saturation, beasing Vo IV
  from the edge of triode region,
                        Vos = VGS - V_ - 1 (Given Vo = 3V)
 Given /4/=1V & kp(W/L) = 06mA/V)
              2 = 3 1/2 (W) (V65+) (
                1 = \frac{0.5}{1 \times 0.6 \times (V_{GS} + 1)^2}
V_{GS} = \frac{1}{2} \times 0.6 \times (V_{GS} + 1)^2
                 :. <del>VDS\--VGS-V</del>E-
           40-3V, Y3-6V- V6=3V
             V_{G} = V_{DD} \times \frac{R_2}{R_1 + R_2}
              3 = 10 \times \frac{R_2}{R_1 + R_2}
                 \frac{K_2}{R+R_2} = \frac{3}{10} \left( R_1 + R_2 = 1 \right)
                     R<sub>2</sub> = 0.3 m
                                          R_{\mu} = 6.7 \Omega_{\perp}
                                                  R_{S} = \frac{V_{DD} - V_{S}}{\Sigma_{D}} = \frac{10 - 3.82}{1 \times 10^{-3}}
To = 1 × 0.6 × (Vas+1)2
 (\frac{1}{16} + \frac{1}{16})^2 = \frac{1}{16} + \frac{1}{16} = \frac{3.33}{16}
                                                          = 6.18 K.A
                                                      VG = VDD X RE
  Vas+1 = 1.82
           Vas = -0.82V
: Vos = V<sub>os</sub> = V<sub>t</sub> - / = -0.82+1-1 = -0.82V
Vo=3V ... Vs = 3.82V
           1. VG = 3.V
```


Il Input resistance, Rin = Rg

Thus
$$V_{\ell} = V_{sig} \cdot \frac{R_{in}}{R_{in} + R_{sig}} = V_{sig} \cdot \frac{R_{G}}{R_{G} + R_{sig}} - 0$$

 $R_{G} \rightarrow R_{Sig}$, $V_{\ell} \cong V_{Sig}$

Open-circuit voltage gain,
$$A_{Vo} = \frac{y_0}{y_0 + y_{gm}} - A_{Vo}$$

For $y_0 > > R_L$, $A_V \cong \frac{R_L}{R_L + y_{gm}} - (5)$

Overall voltage gain, Giv can be found by combining () and (3)

$$G_{V} = \frac{R_{G}}{R_{G} + R_{Sig}} \cdot \frac{R_{L}//\gamma_{0}}{(R_{L}//\gamma_{0}) + \gamma_{gr}}$$

$$\overline{M}$$
a) Open circuit voltage gain, $A_{Vo} = \frac{\gamma_0}{\gamma_0 + \gamma_0}$
Given, $\gamma_0 = 20k_{11}$, $g_m = 5$

$$A_{Vo} = \frac{20 \times 10^3}{20 \times 10^3 + \gamma_0} \cong 1$$

b) Output resistance,
$$R_{out} = \frac{1}{g_m} \frac{1}{v_o}$$
$$= \frac{v_b}{1} \frac{1}{20 \times 10^3} = 6.1999$$
$$\cong 0.2.2.$$

c) Voltage gain,
$$A_V = \frac{R_L/l_{YO}}{(R_K/l_{YO}) + l_{gm}}$$
 (Given $R_L = 1.5 k_{LO}$)
$$= 0.8746$$

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC CIRCUITS
Evaluation component: QUIZ 1	Date & Time: 07-03-2013 , 11:15AM TO 11:35 AM
Weightage: 8%	Max marks :16
Duration: 20 Minutes	Note : Answer all the question,
	assume any missing data suitably

SET A

Q.1	Match the expressions given, below, with the terms	by indicati	ng matching terms: A to H agains	t each 0.25x8 =2M
	expression. A (Terms)	R /Ev	pressions)	
	A. Voltage Gain	<u>в (сл</u> і.	P _L /P ₁]	C 1
	B. Current Gain	ii.	P _L x 100/P _{dc} I	F 1
				H]
	C. Power Gain		P _{dc} +P _l -P _L I	
	D. Open Circuit Voltage Gain		ν _ο /ν _i Ι	
(E. Open Circuit Transresistance	٧.	i _o /i _i	B]
	F. Efficiency	vi.	$\frac{L_{-}}{A_{v}} \le v_{I} \le \frac{L_{+}}{A_{v}} $	<u> </u>
	G. Amplifier Saturation	vii.	$A_{is}\left\{\frac{R_o}{R_i}\right\}$	<u>D</u>
	H. P _{dissipated}	viii.	$A_{vo}R_i$	El
Q.2	Lower frequency part of an Amplifier's frequency re Constant Circuit while its high frequency part is typi Circuit.			
Q.3				ile its 0.5x2=
	Collector Base Junction should be Reverse biased			1M
Q.4	A Common-emitter amplifier operated with V _{CC} =+10 a. Its voltage gain is: <u>-360</u> ; b. Its max. allowed output negative swing with c. The corresponding maximum input signal per	out the tra	nsistor entering saturation is: 0.7	0.5+1+0.5 = 2M
. 5	For the transistor circuit shown in Fig. below, assum	e α≡1 and v		/? 1+1 = 2M
	$V_{S} \circ \longrightarrow \bigvee_{i=1}^{\infty} I_{K} \hat{\Omega}$	Ans: V _E = <u>-0.5</u> V _c = <u>4.5</u>		
Q.6	Introducing a resistor in the emitter of a common em against variations in: A. Only the temperature B. Only the β of the transistor C. Both temperature and β D. None of the above	itter amplifie	er stabilizes the dc operating point Ans: C	t 1M

SPACE FOR ROUGH WORK:

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244 ECE F244 INSTR F244	Course Name: MICROELECTRONIC CIRCUITS	
Evaluation component: QUIZ 1	Date & Time: 07-03-2013 , 11:15AM TO 11:35 AM	
Weightage: 8%	Max marks :16	
Duration: 20 Minutes	Note: Answer all the question,	
	assume any missing data suitably	

SET B

Q.1		non emitter amplifier stabilizes the dc operating point	1M
	against variations in:		
	A. Both temperature and β		
	B. Only the β of the transistor	Ans: A	
	C. Only the temperature		
	D. None of the above		
	3		
Q.2	For the following BJT circuit, what is the colle	ector current and voltage at the collector point?	1+1=2M
	+10V		
	<u> </u>		
,	$ $ 4.7 $k\Omega \lesssim^{ic} $		
ž.	+6V c ×c	Ans:	
	$\beta = 100$	Collector Current= 1.6mA	
	V _{BE} =0.7	Collector Current- 1.0111A	
	3.3kΩ ⋛	Voltage at the collector=2.48V	
	J.JR32 >		
	<u></u>		
Q .3	For the common-emitter amplifier ac equivale	nt circuit, all capacitors are	1M
	 A. not connected to ground 		
	B. effectively open circuits.	Ans: C	
	C. effectively shorts		
	D. connected to ground.		
Q.4	A BJT having β =100, is biased at a dc collector	or current of 1mA. Find the value of small signal input	1M
	resistance between base and emitter (r_π)		
		2.51.0	
		Ans: 2.5kΩ	
i l			
:			
<u> </u>		274 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1+1 =
Q.5	For the transistor circuit shown in Fig. below,	assume $\alpha \equiv 1$ and $v_{BE}=0.7V$. Find V_E and V_C for $V_B=0V$?	2M
		Ans:	
	(v) 5 mA	Tuig.	
	Ψ"""	0.71/	
	• Va	V _€ = <u>-0.7V</u>	
	∮ 1kΩ		
	V ₈ 0	V _c = 4.7 V	
	~ = −		
	$\sim V_{E}$		
-	.1		
ļ	√1 mA Ş(kΩ		
	↓		
	,		
			1

Q.6	Match the expressions given, below, with the terms by indicating matching terms: A to H against each expression.				
	A (Terms)	<u>В (Ех</u>	B (Expressions)		
	A. Voltage Gain	i.	P_L/P_I	<u>[C]</u>	
	B. Current Gain	ii.	$P_L \times 100/P_{dc}$	[F]	
	C. Power Gain	iii.	$P_{dc}+P_{l}-P_{L}$	[H]	
	D. Open Circuit Voltage Gain	iv.	v_o/v_i	<u>[A]</u>	
	E. Open Circuit Transresistance	٧.	i _o /i _i	[B]	
	F. Efficiency	vi.	$\frac{L_{-}}{A_{\nu}} \le \nu_{I} \le \frac{L_{+}}{A_{\nu}}$	[<u>G]</u>	
	G. Amplifier Saturation		$A_{is}\left\{\frac{R_o}{R_i}\right\}$	[D]	
	H. P _{dissipated}	viii.	$A_{vo}R_i$	[<u>E</u>]	
Q.7	A Common-emitter amplifier operated with V _{CC} =+10V is biased at V _{CE} =+1.0V. a. Its voltage gain is: <u>-360</u> ; b. Its max. allowed output negative swing without the transistor entering saturation is: <u>0.7V</u> ; c. The corresponding maximum input signal permitted is: <u>1.94mV</u>				0.5+1+0.5 = 2M
Q.8	Refer to the following figure. Determine the mi $+12V$		· · · · · · · · · · · · · · · · · · ·	aturation.	2M
	$4.7k\Omega \stackrel{C}{>}^{lC}$ $\beta = 200$ $V_{CE(sat)} = 0.2V$	Ans: 12.55	IA .		
Q.9	For a BJT to function like an Amplifier, its Emitter Base Junction should not be Reverse biased while its Collector Base Junction should be Reverse biased.			0.5x2= 1M	
Q.10	Lower frequency part of an Amplifier's frequency response is typically that of <u>High pass</u> Single Time Constant Circuit while its high frequency part is typically that of <u>Low pass</u> Single Time Constant Circuit.			0.5x2= 1 M	
Q.11	A. Remains stationary B. Moves at right angle to the load line C. Moves up the load line D. Moves down the load line	oltage increases	the instantaneous ope	erating point:	1M

SPACE FOR ROUGH WORK

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244/ ECE F244/ INSTR F244	Course Title: MICROELECTRONICS CIRCUITS
Evaluation component: QUIZ 1	Date & Time: 07-03-2013 , 11:15AM TO 11:35 AM
Weightage: 8%	Max marks :16
Duration: 20 Minutes	Note : Answer all the question,
Write your answers only in space provided	assume any missing data suitably

SET A

Match the expressions given, below, with the term expression.	is by indicati	ng matching terms: /	4 to fi against each	0.25x	
1			-	=2N	
A (Terms)	B (Ex	oressions)			
A. Voltage Gain	i.	P _L /P _J	[]		
B. Current Gain	ii.	P _L x 100/P _{dc}	[]		
C. Power Gain	III.	P _{dc} +P _j -P _L	[]		
D. Open Circuit Voltage Gain	iv.	v _o /v _i	[]		
E. Open Circuit Transresistance	٧.	i _o /i _i	[]		
F. Efficiency	vi.	$\frac{L_{-}}{A} \leq v_{I} \leq \frac{L_{+}}{A}$	[]		
G. Amplifier Saturation			[]		
H. P _{dissipated}	viii.	$A_{vo}R_i$	[]		
Lower frequency part of an Amplifier's frequency re	esponse is ty	pically that of	Single	0.5x2= 1M	
	is typically th	hat of	Single Time		
				0.5x2≃	
nts confector base function should be blased.					
A Common-emitter amplifier operated with V_{CC} =+10V is biased at V_{CE} =+1.0V.				0.5+1+0.5 = 2M	
a. Its voltage gain is:;					
·	nout the tran	isistor entering satur	ation		
	ermitted is:				
		BE=0.5V. Find VE and	V_c for $V_s=0V$?	1+1 =	
A	•			2M	
(I) s ma					
J sun	Ans:				
0.70	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
V _B 0	, v _E =				
	V _c =			·	
$V_{\bar{e}}$					
ψ _{1 mA} ≱ i kΩ			i		
↓ ±					
	tter amplifier	stabilizes the dc ope	erating point	1M	
A. Only the temperature		· _			
B. Only the β of the transistor	1	Ans:			
C. Both temperature and β	1				
ī	C. Power Gain D. Open Circuit Voltage Gain E. Open Circuit Transresistance F. Efficiency G. Amplifier Saturation H. P _{dissipated} Lower frequency part of an Amplifier's frequency retrime Constant Circuit while its high frequency part Constant Circuit. For a BJT to function like an Amplifier, its Emitter Baits Collector Base Junction should be A Common-emitter amplifier operated with V _{CC} =+10 a. Its voltage gain is: b. Its max. allowed output negative swing with is: c. The corresponding maximum input signal per For the transistor circuit shown in Fig. below, assum Throducing a resistor in the emitter of a common emiagainst variations in: A. Only the temperature B. Only the β of the transistor	C. Power Gain D. Open Circuit Voltage Gain E. Open Circuit Transresistance V. F. Efficiency G. Amplifier Saturation H. P _{dissipated} Viii. Lower frequency part of an Amplifier's frequency response is ty Time Constant Circuit while its high frequency part is typically the Constant Circuit. For a BJT to function like an Amplifier, its Emitter Base Junction its Collector Base Junction should be	C. Power Gain D. Open Circuit Voltage Gain E. Open Circuit Transresistance V. i_0/v_1 E. Open Circuit Transresistance V. i_0/l_1 F. Efficiency G. Amplifier Saturation H. P _{dissipated} Viii. $A_{ls} \left\{ \frac{R_o}{R_t} \right\}$ H. P _{dissipated} Viii. $A_{vo}R_t$ Lower frequency part of an Amplifier's frequency response is typically that of	C. Power Gain iii. $P_{dc}+P_{\Gamma}P_{L}$ [] D. Open Circuit Voltage Gain iv. V_{o}/V_{l} [] E. Open Circuit Transresistance V_{l} i. I_{l}/I_{l} [] F. Efficiency V_{l} i. I_{l}/I_{l} i. [] G. Amplifier Saturation V_{l} ii. $A_{lg} \left\{ \frac{R_{o}}{R_{l}} \right\}$ [] H. $P_{dissipated}$ viii. $A_{Vo}R_{l}$ [] Lower frequency part of an Amplifier's frequency response is typically that of	

Q.7	7 In a CE transistor amplifier, if collector–emitter voltage increases the instantaneous operating point:				
	A. Moves up the load line				
	B. Moves down the load line	Ans:			
	C. Moves at right angle to the load line				
	D. Remains stationary	 _			
Q.8					
	+12V				
	$4.7k\Omega \gtrsim^{i_C}$				
	+6V C 7c	Ans:			
	$\beta = 100$	Collector Current=			
	V _{BE} =0.7				
		Voltage at the collector=			
	3.3k Ω ≷				
Q.9	Pofor to the following figure. Determine the	mainimum value of T. Abet will an dura actionstic	2M		
Q.9		minimum value of $I_{\mbox{\scriptsize B}}$ that will produce saturation.	2141		
	+10V				
1					
	$4.7k\Omega \gtrsim^{\iota_C}$	Ans:			
	vc vc				
	1.2ΜΩ				
	$\beta = 200$ $V_{CE(sat)} = 0.2V$				
	CE(sat) -0.2 V				
Q.10	For the common-emitter amplifier ac equivaler	nt circuit, all capacitors are	1M		
۵,10	A. effectively shorts.				
	B. effectively open circuits.	Ans:			
	C. not connected to ground.				
	D. connected to ground.	~			
Q.11	A BJT having β=200, is biased at a dc collecto	r current of 1mA. Find the value of small signal input	1M		
	resistance between base and emitter (r_π)				
		Ans:			
<i>,</i> -			į		
CD 1 CE					
SPACE	FOR ROUGH WORK:				
			1		
			J		
			Ī		
			i		

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI UAE SECOND SEMESTER 2012-2013

Course No: EEE F244/ ECE F244/ INSTR F244	Course Title: MICROELECTRONICS CIRCUITS		
Evaluation component: QUIZ 1	Date & Time: 07-03-2013 , 11:15AM TO 11:35 AM		
Weightage: 8%	Max marks :16		
Duration: 20 Minutes	Note: Answer all the question,		
Write your answers only in space provided	assume any missina data suitably		

SET B

Q.1	Introducing a resistor in the emitter of a comr	mon emitter amplifier stabilizes the dc operating point	1 1M
	against variations in: A. Both temperature and β B. Only the β of the transistor C. Only the temperature D. None of the above	Ans:	
Q.2	$ \begin{array}{c c} +10V \\ 4.7k\Omega & \downarrow c \\ +6V & \downarrow c \\ \beta = 100 \\ V_{BE} = 0.7 \end{array} $ $3.3k\Omega & \downarrow c$	Ans: Collector Current= Voltage at the collector=	1+1=2M
Q.3	For the common-emitter amplifier ac equivaler A. not connected to ground B. effectively open circuits. C. effectively shorts D. connected to ground.	nt circuit, all capacitors are Ans:	1M
Q.4	A BJT having β =100, is biased at a dc collectoresistance between base and emitter (r_{π})	or current of 1mA. Find the value of small signal input Ans:	1M
Q.5	For the transistor circuit shown in Fig. below, a V_c	assume $\alpha\equiv 1$ and $v_{BE}=0.7V$. Find V_E and V_C for $V_B=0V$? Ans: $V_E=$ $V_c=$	1+1 = 2M

Q.6	Match the expressions given, below, with the terms by indicating matching terms: A to H against each expression.				0.25x8 = 2M
	A (Terms)	<u>B (Ex</u>	oressions)		
	A. Voltage Gain	i.	P_L/P_1	[]	
	B. Current Gain	ii.	$P_L \times 100/P_{dc}$	[]	
	C. Power Gain	iii.	$P_{dc}+P_{l}-P_{L}$	[]	
	D. Open Circuit Voltage Gain	iv.	v _o /v _i	[]	
	E. Open Circuit Transresistance	v.	· i _o /i,	[]	
	F. Efficiency	vi.	$\frac{L_{-}}{A_{n}} \le v_{I} \le \frac{L_{+}}{A_{n}}$	[]	
	G. Amplifier Saturation		$A_{is}\left\{\frac{R_o}{R_i}\right\}$	[]	
	H. P _{dissipated}	viii.	$A_{vo}R_i$	[]	
Q.7	A Common-emitter amplifier operated with V _{CC} a. Its voltage gain is: b. Its max. allowed output negative swing is: c. The corresponding maximum input sign Refer to the following figure. Determine the minute state of the s	; without the tran	at V _{CE} =+1.0V. nsistor entering satur		0.5+1+0.5 = 2M
	$4.7k\Omega \geqslant^{i_C}$ $0 \qquad \qquad \downarrow^{V_C}$ $\beta = 200$ $V_{CE(sat)} = 0.2V$	Ans:			
Q.9	For a BJT to function like an Amplifier, its Emitte			biased	0.5x2= 1M
	while its Collector Base Junction should be		iased.		
Q.10	Lower frequency part of an Amplifier's frequency Time Constant Circuit while its high frequency pa Constant Circuit.	art is typically tha	at of	Single Time	0.5x2= 1M
Q.11	In a CE transistor amplifier, if collector-emitter vo	ltage increases t	the instantaneous ope	erating point:	1M
	 A. Remains stationary B. Moves at right angle to the load line C. Moves up the load line D. Moves down the load line 		Ans:		

SPACE FOR ROUGH WORK