BITS PILANI DUBAI

DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI COMPREHENSIVE EXAMINATION 2010

CIRCUITS AND SIGNALS (EEE/ECE/INSTR C272)

Date: 25-05-2010

Time: 3 Hours Total marks: 120 (40%)

* Write the answers for PARTA, PARTB and PARTC questions in the prescribed answer books.

Any missing data can be suitably assumed

PART A

Q 1 Determine the Hybrid Parameters (h-parameters) for the following circuit. 15 Assume the following values for R_i = 1 M Ω , R_0 = 100 Ω , A = 1000, R_1 = 10 K Ω and R_2 = 10 K Ω

Q 2A Is e^{-at} an energy or power signal, if

5

- a) a is real
- b) a is purely imaginary
- c) What kind of a signal is it, if a is purely imaginary?

10

Q 2B Given the following equations where, the input and output are represented by f(t) and y(t) respectively. Determine in each case, whether the system is

- I. Linear/Non-linear
- II. Time- Invariant /Time-Varying
- III. Causal/Non-causal
- IV. Static/Dynamic

a)
$$y(t) = f(at) + f(t-2)$$

b)
$$y(t) = \int_{-5}^{5} f(\tau) d\tau$$

Justify your answer.

10

Q 3 For $f(t) = \sin(3t) u(t)$ and $h(t) = e^{-t} u(t)$, find the convolved signal f^*h . Also, for $f(t) = e^{-t} u(t)$ and $h(t) = \sin(3t) u(t)$, find the convolved signal f^*h .

Note:
$$\int e^{ax} \sin(bx) dx = \frac{e^{ax} \left(a \sin(bx) - b \cos(bx)\right)}{\left(a^2 + b^2\right)};$$

10

Q 1 Obtain the Complex Exponential Fourier series expansion and plot the line spectrum for the following signal f(t)

Q 2 Obtain the Fourier Transform for the signal as depicted in figure below

Q 3

For the system transfer function, $H(s) = \frac{s+5}{s^2+5s+6}$, find

a) Impulse response of the system h(t)

b) Output of the system for the input $e^{-4t}u(t)$

PART C

- Consider an analog signal $x(t) = \{2\sin^2(200\pi t)(1+\cos(100\pi t))\}$ is ideally sampled at a rate of 1000 samples per second. Sketch the spectrum of the sampled signal. Suggest a method to recover the analog signal from its samples
- Q 2A A given sequence $x_1(k) = \{1, -1, 1, -1\}$ has its DFT $X_1(r) = \{0, 0, 4, 0\}$. Using 6 the DFT properties, obtain the DFT of the sequence $\{-1, 1, -1, 1\}$. State the property used.

Q 2B Consider a signal $x_1(k)$ having its DFT such that $X_1(r) = (0, -1 + j, 0, -1 - j) \text{ If } x_2(k) = \{-1, -1, 1, 1\}, \text{ obtain IDFT}$ $\{X_1(r)X_2(r)\}.$

Q 3 Consider an LTI discrete time causal system described by the difference equation $y(k) = x(k) + \frac{5}{6}y(k-1) - \frac{1}{6}y(k-2)$, with x(k) as input and y(k) as the output. Find

- a) System Transfer Function H(z) specifying the ROC.
- b) Impulse Response h(k)
- c) Also find the output y(k) if x(k)=u(k)

BITS PILANI DUBAI

DUBAI INTERNATIONAL ACADEMIC CITY DUBAI

CIRCUITS AND SIGNALS

DATE: 2-05-2010 TEST II (Open Book)

MAX MARKS: 60(20%) TIME: 50 MINS

Note: Answer ALL questions . Any missing data can be suitably assumed

Only Prescribed Text books and Handwritten Notes are admissible Photo-copies of books or notes are not allowed for the Test.

1	Consider the signal $M(\omega)$ defined as follows:	
	$\left[\frac{\omega}{10} + \left(1 + \frac{\omega_c}{10}\right) \text{for } -\omega_c - 10 \le \omega \le -\omega_c\right]$	
	$\mathbf{M}(\omega) = \begin{cases} -\frac{\omega}{10} + \left(1 - \frac{\omega_{c}}{10}\right) & \text{for } -\omega_{c} \le \omega \le -\omega_{c} + 10 \\ \frac{\omega}{10} + \left(1 - \frac{\omega_{c}}{10}\right) & \text{for } \omega_{c} - 10 \le \omega \le \omega_{c} \end{cases}$	
	$\left \frac{\omega}{10} + \left(1 - \frac{\omega_c}{10} \right) \right \text{ for } \omega_c - 10 \le \omega \le \omega_c$	
	$\left[-\frac{\omega}{10} + \left(1 + \frac{\omega_c}{10} \right) \text{ for } \omega_c \le \omega \le \omega_c + 10 \right]$	
	1. Sketch $M(\omega)$	(5)
	 2. Obtain the Inverse Fourier Transform m(t). 3. State (not only list) the Fourier Transform properties used. 	$\begin{array}{ c c } (10) \\ (5) \end{array}$
	3. State (not only list) the Fourier Transform properties used.	
·	Find the output y(t) for the system described by the following differential	
	equation $\frac{d^2y}{dt^2} + y(t) = 3x(t)$ with initial conditions $y(0^-) = 0, \dot{y}(0^-) = 2$ and input $x(t) = e^{-t}u(t)$ using Laplace Transform	
	Zapiaco Timorom	(20)
	Consider a signal $f(t) = 2\sin(200\pi t) \cos(100\pi t)$ being sampled using the	(-1)
	Consider a signal $f(t) = 2\sin(200\pi t) \cos(100\pi t)$ being sampled using the	(5)
	periodic impulse train with impulses spaced at an interval $T_s = 2$ mSec.	(5)
		(5)
A	periodic impulse train with impulses spaced at an interval $T_s = 2$ mSec. Sketch the spectrum of the sampled signal. If the sampled signal is passed through an ideal low-pass filter with a cut off frequency of 200 Hz, can	(5)
	periodic impulse train with impulses spaced at an interval $T_s=2\mathrm{mSec.}$ Sketch the spectrum of the sampled signal. If the sampled signal is passed through an ideal low-pass filter with a cut off frequency of 200 Hz, can the signal $f(t)$ be recovered? Explain.	
	periodic impulse train with impulses spaced at an interval $T_s = 2$ mSec. Sketch the spectrum of the sampled signal. If the sampled signal is passed through an ideal low-pass filter with a cut off frequency of 200 Hz, can the signal $f(t)$ be recovered? Explain. If the DFT $(f(kT)) = F(r\omega_0) = \{0, -1 + j, 2, -1 - j\}$, by taking the Inverse	
4	periodic impulse train with impulses spaced at an interval $T_s = 2$ mSec. Sketch the spectrum of the sampled signal. If the sampled signal is passed through an ideal low-pass filter with a cut off frequency of 200 Hz, can the signal $f(t)$ be recovered? Explain. If the DFT $(f(kT)) = F(r\omega_0) = \{0, -1 + j, 2, -1 - j\}$, by taking the Inverse DFT show that $f(kT) = \{0, -1, 1, 0\}$	(7)

BITS PILANI DUBAI

DUBAI INTERNATIONAL ACADEMIC CITY DUBAI CIRCUITS AND SIGNALS

DATE: 21-03-2010

TEST I

MAX MARKS: 75 (25%)

TIME: 50 MINS

Note: Answer ALL questions. Any missing data can be suitably assumed

	ID No:	
3B	A triangular pulse $x(t)$ is shown below $\frac{1}{2}$ ketch the modified signal $x(3t+2)$.	7
	$ \begin{array}{c c} x(t) \\ \hline -1 & 0 & 1 \end{array} $	
4	A system, specified by its input $x(t)$ and output $y(t)$ is such that $y(t) = \cos(x(t))$. Determine whether the system is a) Linear and b) time invariant	15
5	Convolve the following signals to obtain the output $y(t) = f(t) * g(t)$ $y(t) = f(t) * g(t)$ $y(t) = f(t) * g(t)$	15

BITS, PILANI-DUBAI Dubai International Academic City, Dubai

BE (Hons.) EEE / ECE / EIE II Year, II Semester, 2009-2010 Quiz II (Closed Book)

Course No.: EEE C272 / INSTR C 272 Course Title: Circuits and Signals
Date: Apr 13, 2010 Time: 20 min Max. Marks: 24 Weightage: 8%

Name: Student Id: Section:

Note: Answer all questions. Appropriate assumptions may be made wherever necessary

1. Consider the periodic wave $f(t) = \cos\left(\frac{\pi}{3}t\right) + \sin\left(\frac{\pi}{4}t - 60^{\circ}\right)$. Determine the fundamental period of f(t) in seconds and the angular frequency ω_0 in rad/sec (5 Marks)

Answer =

2. The Complex exponential Fourier series coefficients for certain function f(t) are $F_1 = \left(5\sqrt{2}\right) \angle 45^\circ$ and $F_{-1} = \left(5\sqrt{2}\right) \angle -45^\circ$ with other Fourier Coefficients being zero. Obtain the synthesized function (5 Marks)

Hint: $f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}$ where F_n is the Fourier Coefficient expressed in polar form

3. Find the Complex Exp	onential Fourier series	for the periodic square w	ave with the fundamental perio	od
o. i ma the complex with	Jonionilian i Gamer Genieg	TOT CITE POLITICATE EQUATE IT	avo viiti tijo jangamontai pom	

T = 2 seconds and defined by
$$x(t) = \begin{cases} -1 & \text{for } -1 \le t \le 0 \\ 1 & \text{for } 0 \le t \le 1 \end{cases}$$
. Sketch the Line spectra (8 Marks)

Answer =

^{4.} Let f(t) be a unit gate function and $F_1(\omega)$ its transform .Let $F_2(\omega)$ be the transform of f(t/3). If the first zero crossing from origin of $F_1(\omega)$ is 2π (for $\omega \ge 0$), what is the corresponding zero crossing of $F_2(\omega)$? State the property associated. (6 marks)

SET B

BITS, PILANI-DUBAI

Dubai International Academic City, Dubai BE (Hons.) EEE / ECE / EIE II Year, II Semester, 2009-2010 Quiz II (Closed Book)

Course No.: **EEE C272 / INSTR C 272** Course Title: **Circuits and Signals**Date: Apr 13, 2010 Time: 20 min Max. Marks: 24 Weightage: 8%

			*
Name:	Student Id:	Section:	
•			
	·		

Note: Answer all questions. Appropriate assumptions may be made wherever necessary

1. Consider the periodic wave $f(t) = \cos\left(\frac{2\pi}{3}t\right) + \sin\left(\frac{\pi}{4}t - 60^{\circ}\right)$. Determine the fundamental period of f(t) in seconds and the angular frequency ω_0 in rad/sec (5 Marks)

Answer =

2. The Complex exponential Fourier series coefficients for certain function f(t) are $F_1 = \left(5\sqrt{2}\right) \angle 60^\circ$ and $F_{-1} = \left(5\sqrt{2}\right) \angle -60^\circ$ with other Fourier Coefficients being zero. Obtain the synthesized function f(t) (5 Marks)

Hint: $f(t) = \sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}$, where F_n is the Fourier Coefficient expressed in polar form

3. Find the Complex Exponential Fourier series for the periodic square wave with the fundamental period

T = 4 seconds and defined by
$$x(t) = \begin{cases} -1 & \text{for } -2 \le t \le 0 \\ 1 & \text{for } 0 \le t \le 2 \end{cases}$$
 . Sketch the Line spectra (8 Marks)

Answer =

^{4.} Let f(t) be a unit gate function and $F_1(\omega)$ its transform .Let $F_2(\omega)$ be the transform of f(t/5). If the first zero crossing from origin of $F_1(\omega)$ is 2π rad/sec , (for $\omega \geq 0$), what is the corresponding zero crossing of $F_2(\omega)$? State the property associated. (6marks)

BITS, PILANI-DUBAI Dubai International Academic City, Dubai

BE (Hons.) EEE / ECE / EIE II Year, II Semester, 2009-2010 Quiz I (Closed Book)

Course No.: EEE C272 / INSTR C 272 Course Title: Circuits and Signals
Date: Mar 2, 2010 Time: 20 min Max. Marks: 24 Weightage: 8%

Note: Answer all questions. Appropriate assumptions may be made wherever necessary

1. Consider the two port network as shown in fig P1 . Obtain its Y parameters (6 Marks)

2. A 'T' network is specified by its Z parameters in terms of $\begin{bmatrix} z \end{bmatrix} = \begin{bmatrix} 12 & 8 \\ 8 & 14 \end{bmatrix}$. Draw the 'T' network.If the port 1 is excited by a 10 V dc source, Calculate the current carried by an 18 ohm resistive load connected across the port 2.

4. Consider the signal x(t) as shown in Fig P4. If this signal undergoes a modification as $x\left(\frac{t}{3}-2\right)$, sketch the modified signal and calculate the energy of the modified signal (6 Marks)

