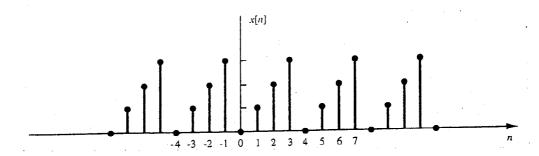
BITS, PILANI-DUBAI CAMPUS

Knowledge Village, Dubai

II YEAR, II SEMESTER, 2006-2007, COMPREHENSIVE EXAMINATION


Course No.: EEE UC272 / INSTR UC272 Course Name: CIRCUITS & SIGNALS

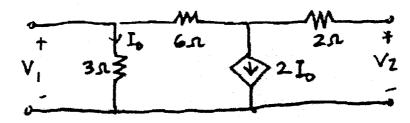
Date: 31-05-2007 Duration: 3 hours Marks: 80 Weightage: 40%

Note: Answer all questions. There are three parts, namely, Part A, Part B, and Part C that are to be answered on separate answer booklets.

Part A (27 marks)

- 1. The output y(t) of a continuous time LTI system is found to be $2e^{-3t}u(t)$ when the input x(t) is u(t). Find the impulse response h(t) of the system using Laplace transform. (7 marks)
- 2. Consider a continuous- time LTI system described by $\frac{dy(t)}{dt} + 2y(t) = x(t)$. If $x(t) = e^{-t}u(t)$, find output y(t) using Fourier Transform. (6 marks)
- 3. Using appropriate properties, obtain the Laplace transform of $e^{-at}\cos(\omega_0 t)u(t)$. (7 marks)
- 4. Determine the Fourier coefficients for the periodic sequence x[n] shown in figure. (7 marks)

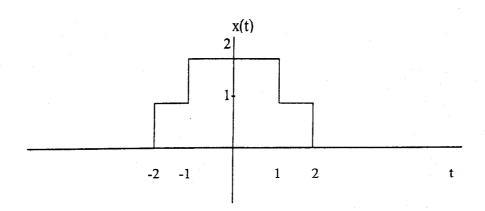
Part B (26 marks)


- 1. A second order system has poles at $z = 0.7 \pm j0.8$, no zeros, and a gain of one.
 - (a) Is the system stable? Explain.
 - (b) What is the transfer function of the system? (2+4=6 marks)

- 2. Find the z-transform of x[n] = (n-3)u[n]. (6 marks)
- 3. Distinguish between linear convolution and circular convolution for discrete-time sequences. (4 marks)
- 4. A piece of music is sampled at 44.1 kHz. A DFT window 23.22 msec long is used.
 - (a) How many time samples will be collected within the window?
 - (b) How many DFT samples do these samples produce?
 - (c) What is the resolution of the DFT? (1.5+1.5+3=6 marks)
- 5. By means of difference equations, explain the difference between IIR and FIR filters. (4 marks)

Part C (27 marks)

1. Find y-parameters of the following circuit


(8 marks)

- 2. a) If $x_1(t) = 5u(t-2)$ and $x_2(t) = 5u(4-t)$, then draw the waveform of $x_3(t) = x_1(t) x_2(t)$ (3 marks)
 - b) Determine whether the signals are periodic or not. Justify.

i)
$$\cos(t) + \sin(t\sqrt{2})$$
 ii) e^{-j2t} (4+4 = 8 marks)

3. Determine the Fourier transform of the signal shown in figure below in terms of the sinc function. (8 marks)

BITS, PILANI-DUBAI CAMPUS Knowledge Village, Dubai

Test 2 (Open Book)

Course No.: EEE UC272 / INSTR UC 272

Course Name: Circuits & Signals

Date: 13/05/2007

()

Time: 50 minutes

Max. marks: 40

Weightage: 20 %

Note:- Answer all questions.

- 1. Find the poles and zeros and sketch the pole-zero plot for the transfer function $H(z) = \frac{z^{-2}}{1 + 0.6z^{-1} + 0.05z^{-2}}$. Is the system stable? Why or why not? (6 marks)
- 2. Find the transfer function H(z) and the difference equation for the filter with the impulse response $h(n) = 2\delta(n) 1.5\delta(n-1) + \delta(n-2) + 0.5\delta(n-3)$. (6 marks)
- 3. Find the digital signal y[n] whose z transform is $Y(z) = \frac{z}{z^2 0.75z 0.25}$.

 (8 marks)
- 4. The Laplace transform of a system is $H(s) = \frac{s}{s^2 + 5s + 6}$. If the input to the system is $x(t) = e^{-t}u(t)$, find the output y(t). (8 marks)
- 5. Consider the system y[n] = nx[n]. Test whether the system is linear or not. (4 marks)
- 6. Obtain the convolution of the functions $e^{-3t}u(t)$ and 2u(t) and sketch the result. (8 marks)

BITS, PILANI-DUBAI CAMPUS

Knowledge Village, Dubai

EEE / EIE II Year, II Semester, 2006-2007

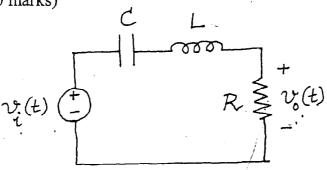
TEST-I (Closed Book)

Course No.: EEE UC272 / INSTR UC272

Course Title: Circuits & Signals

Date: 18 Mar 2007 Duration: 50 min

Max. Marks: 40 Weightage: 20%


Note: Answer all questions

1. Realize the function

$$G(s) = \frac{V_o(s)}{V_i(s)} \stackrel{\Delta}{=} \frac{4s}{s^2 + 4s + 20}$$

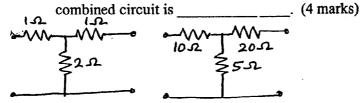
using the circuit shown below. Select $R = 2\Omega$ and determine L and C.

(10 marks)

- 2. Obtain the complex exponential series representation for the signal $x(t) = \cos 4t + \sin 6t$. (6 marks)
- 3. Using appropriate properties, obtain the Fourier transform of the signal $x(t) = \frac{\sin at}{\pi t}$. (10 marks)
- 4. Find the inverse Fourier transform of $4\delta(\omega \omega_0)$. (6 marks)
- 5. Sketch the functions: (a) f(t) = 5u(t) 3u(t-1) 2u(t-2). (4 marks)
 - 6. Evaluate the integral $\int_{1}^{2} (2t^{2} + 5)\delta(t)dt$. (4 marks)

NAME:-ID:-

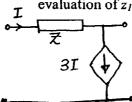
Version B

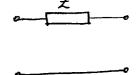

BITS, PILANI-DUBAI CAMPUS Knowledge Village, Dubai EEE / EIE II Year, II Semester, 2006-2007 QUIZ (Closed Book)

Course No.: EEE UC272 / INSTR UC272

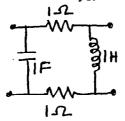
Course Title: Circuits & Signals

Date: 27 Feb 2007 Duration: 30 min Max. Marks: 20 Weightage: 10% Note: Answer all questions. Show all steps.


1. The two networks shown below are connected in series. Then z_{22} for the


2. Define the two h-parameters: h_{12} and h_{21} . (2 marks)

3. The fundamental period of the signal $x(t) = \cos\left(\frac{\pi}{3}t\right) + \sin\left(\frac{\pi}{4}t\right)$ is _____. (4 marks)


4. The value of the current in the dependent current source below for the evaluation of z_{12} and z_{22} is ______. (2 marks)

5. Find the transmission parameters for the single-element two-port network shown below. (4 marks)

6. Find y_{21} and y_{22} for the network shown below in terms of s. (4 marks)

