### BITS, Pilani-Dubai Campus Knowledge Village

II Year - II Semester 2004 - 2005 MT-1

| COURSE NO.: <u>TAUC211;</u><br>TIME: <u>2 hrs;</u>                                                                                     | COURSE TITLE: <u>Measu</u><br>MARKS: <u>80</u> Da                          | rement Techniques-I;                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                                                                        |                                                                            |                                                                                                |
| ID NO                                                                                                                                  |                                                                            |                                                                                                |
|                                                                                                                                        | <b>PHYSICS</b>                                                             |                                                                                                |
| NOTE: (Answer all Quest have more than one correct                                                                                     | ions, Data provided are of answer. Mark all the rig                        | complete. Some questions might choices)                                                        |
| Please enclose the fir                                                                                                                 | nal answer of the numeric                                                  | al questions in a box                                                                          |
| Possibly for use                                                                                                                       |                                                                            | - questions in a pox                                                                           |
| ${c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}}$ ;                                                                              | $\mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}$ ;                           | $\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F \cdot m^{-1}};$                                |
| $h = 6.63 \times 10^{-34} \text{ J·s}; e = 1.60$                                                                                       | $2 \times 10^{-19} \text{ C}$ ; $m_e = 9.1 \times 10^{-3}$                 | $^{1}$ kg; $m_p = 1.67 \times 10^{-27}$ kg}                                                    |
| (e/m ratio)                                                                                                                            |                                                                            |                                                                                                |
| 1. Of the three vectors in angles?                                                                                                     | the equation $\vec{F}_B = q\vec{v} \times \vec{B}$ ,                       | which pair(s) are always at righ                                                               |
| (a) $\vec{F}_B$ and $\vec{v}$ ; (d) None;                                                                                              | (b) $\vec{v}$ and $\vec{B}$ ; (c) $\vec{B}$ (e) All three must be at right | $ec{eta}_B$ and $ec{F}_B$ ; at angles.                                                         |
| 2. An electron with a spragnetic field. The time requirement he electron is now doubled to (a) $4r_o$ , (b) $2r_o$ ;                   | $2v_o$ . The radius of the circles                                         | circle of radius $r_o$ in a uniform the electron is $T_o$ . The speed of e will change to  [2] |
| Planck's constant by photoe  What is the effect of mitter in a photoelectric-effect  (a) The work function of (b) The cutoff frequency | increasing the wavelength apparatus? lecreases.                            | of the light that falls on the                                                                 |
| (c) The stopping potent                                                                                                                | ial decreases.                                                             |                                                                                                |

|           | (d) The time delay for (e) None of the above                                                                                                                        | -                                                                           | electrons increas | ses.                                |                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------|-------------------------------------|-----------------------------|
| on        | Monochromatic light the emitter in a photoele bled while the frequency is  (a) The work function (b) The photoelectric (c) The stopping poten (d) None of the above | ectric effect appara<br>s kept constant.<br>decreases.<br>current increases | atus. The inte    | utoff frequency<br>nsity of the lig | is incident that is the [1] |
| 5.<br>wav | fraction over a single an In a double-slit experimelength is 480 nm, the sima is 10mm. (a) What ima? (b) What is the slit was:                                      | ment, the distance lastit separation d is is the spacing bet                | 0.12 mm and       | the width of t                      | he centra                   |
|           |                                                                                                                                                                     |                                                                             |                   |                                     |                             |
|           |                                                                                                                                                                     | •                                                                           |                   |                                     |                             |
|           | •                                                                                                                                                                   |                                                                             |                   |                                     | 1                           |
|           |                                                                                                                                                                     |                                                                             |                   |                                     |                             |
|           |                                                                                                                                                                     |                                                                             |                   |                                     |                             |
|           |                                                                                                                                                                     |                                                                             |                   |                                     |                             |
|           |                                                                                                                                                                     |                                                                             | •                 |                                     |                             |
| (Ind      | uction of solenoids)                                                                                                                                                |                                                                             |                   |                                     |                             |
| 6.        | An inductor can be n                                                                                                                                                | nade out of a meta                                                          | al "Slinky", wh   | ich is basically                    | a flexible                  |
|           | noid. If the "Slinky" is st                                                                                                                                         |                                                                             |                   |                                     |                             |
| will      |                                                                                                                                                                     |                                                                             |                   |                                     | [2]                         |
|           |                                                                                                                                                                     |                                                                             |                   |                                     |                             |
|           | (a) change to $L_o/2$ ;                                                                                                                                             | (b) change t                                                                | o $2L_o$ ,        | (c) change to                       | $\sqrt{L_o}$ ;              |
|           | (d) remain the same                                                                                                                                                 |                                                                             |                   |                                     |                             |
|           | An inductor has an indule the radius and double the second inductor to the o                                                                                        | the number of wind                                                          |                   |                                     |                             |
| . 4       | (a) 4; (b) 2;                                                                                                                                                       | (c) 1;                                                                      | (d) ½;            | (e) None.                           | *                           |
|           |                                                                                                                                                                     |                                                                             |                   |                                     |                             |

(Electron Diffraction)

8. When a high energy electron-beam enters and leaves a crystal it undergoes [1]
(a) Reflection; (b) dispersion; (c) refraction;
(d) diffraction; (e) splitting.

r=monks

2

9. An x-ray of wavelength 0.122 nm is required for studying a lithium fluoride crystal: (a) What should be the potential applied to an electron beam for this study? (b) If the first order diffraction is a circle of radius 1.25 cm, 130 mm from the specimen, what is the lattice parameter?

[4]

Ans:

(Fine structure of one-electron spectrum)

10. A grating has 9600 lines and has a diffraction constant of 2083 nm. It is illuminated by light from a sodium vapor discharge. (a) What is the expected position ( $\theta$ ) of the yellow line ( $\lambda = 589$  nm) in the third order? (b) If there two yellow lines ( $\lambda = 589.00$  nm and  $\lambda = 589.59$  nm) what is the angular separation between them in the second order pattern? [4] Ans:

(Vibration of strings)

11. A string of length 12 m that is fixed at both ends supports a standing wave with a total of 5 nodes. What are the harmonic number and wavelength of this standing wave?

Ans:

[2]

12. A string of length 10 m and mass 200 g is fixed at both ends, and the tension in the string is 32 N. What is the frequency of the standing wave for which the distance between a node and the closest antinode is 1 m?

[3]

Ans:

1 , 11

(RLC)

- 13. In the plot of Voltage and frequency of a parallel tuned circuit, the peak value is
  - (a) the maximum Q value
  - (b) the natural frequency of the circuit
  - (c) The point where the Impedence is pure resistance
  - (d) None of the above

[1]

A circuit has L = 12 mH,  $C = 1.6 \mu F$ , and  $R = 1.5 \Omega$ . (a) What is the frequency at 14. which this circuit would resonate to an external frequency? (b) What is the Impedence, Z, at resonance? Ans:

(Ferromagnetic Hysteresis)

What are units for the magnetization M? 15.

[1]

- (a) T;
- (b)  $T/m^3$ ;
- (c) C/m.s;
- (d) C.m/s
- Which type of substance retains magnetism? 16.

[1]

- (a) Paramagnetic;
- (b) Diamagnetic;
- (c) Ferromagnetic;
- (d) Paramagnetic and ferromagnetic substances tend to be about the same;
- (a) All three types are about the same.

(Hall Effect)

P= FR

CSTMTI

A strip of copper 150  $\mu$ m thick is placed in a magnetic field B = 0.65 T perpendicular to the plane of the strip, and a current I = 23 A is set up in the strip. What Hall potential difference  $\Delta V_H$  would appear across the width of the strip if there were one charge carrier per atom? [2] Ans:

(Solar Cell)

18. Intensity of light at some distance from the source is 2.717x 10<sup>34</sup> A/m<sup>2</sup>. What should be the short circuit current through a thermopile placed at this point? [2] Ans:

#### (Elastic collisions)

- 19. Two objects move toward each other, collide, and separate. If there was no net external force acting on the objects, but some kinetic energy was lost, then [1]
  - (a) the collision was elastic and total linear momentum was conserved.
  - (b) The collision was elastic and total linear momentum was not conserved.
  - (c) The collision was not elastic and total linear momentum was conserved.
  - (d) The collision was not elastic and total linear momentum was not conserved.
  - (e) None of the above.
- 20. Object #1 moves toward Object #2, whose mass is twice that of Object #1 and which is initially at rest. After their impact, the objects lock together and move with what fraction of Object #1's initial kinetic energy? [2]
  - (a) 1/18
  - (b) 1/9
  - (c) 1/6
  - (d) 1/3

(e) None of the above

#### **CHEMISTRY**

| 1. Which are the two functional groups present in typical carbohydrates? (1)                                                                        |                                     |                                       |                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------|------------------|
|                                                                                                                                                     |                                     | · · · · · · · · · · · · · · · · · · · |                  |
| 2. Starch reacts with iodin formation of a complex (a) amylopectin fraction (b) amylose fraction of (c) both amylopectin and (d) none of the above. | between iodine and of starch starch |                                       | s due to the (1) |
|                                                                                                                                                     |                                     |                                       |                  |
| 3.How will you distinguish                                                                                                                          | h between succinic a                | cid and oxalic acid?                  | (1)              |
|                                                                                                                                                     |                                     |                                       |                  |
|                                                                                                                                                     |                                     |                                       |                  |
|                                                                                                                                                     |                                     |                                       |                  |
|                                                                                                                                                     |                                     |                                       |                  |
| 4. Why are carboxylic acids both have -OH groups                                                                                                    |                                     | eir corresponding ald                 | cohols when (1)  |
|                                                                                                                                                     |                                     |                                       |                  |

| 5. The factor which does not influe (a) nature of reactants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ence the rate of reaction is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1)              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| (b) concentration of reactants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| (c) temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second of the second o |                  |
| (d) molecularity of the reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| (a) molecularity of the reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 6. The rate constant of a unimolect concentration of the reactant was sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ular first order reaction is 0.0231 ill reduce to half of its original con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | centration in    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 7. The kinetics of acid hydrolysis of estimation of  (a) acetic acid formed  (c) ethyl acetate consumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) HCl consumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | olumetric<br>(1) |
| ( ) om i decidio consumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) ethyl alcohol formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| 8. How will you calculate the molar of electrolyte and for a weak electrolyte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | conductance at infinite dilution for yte.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a strong (1)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 9. The resistance offered by 2 M aceting 1.6 × 10 <sup>-3</sup> mho cm <sup>-1</sup> is (cell constant (a) 6.25 ohms (b) 0.160 ohms (cell constant (a) 6.25 ohms (cell constant (a) | ic acid solution having specific cont = 0.005 cm <sup>-1</sup> ) c) 0.64ohms (d) 3.125 ohms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nductance (1)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| ace,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 10. In second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 10. In general the molar conductance with increase in concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of an electrolyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| with increase in concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or and offortionals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u>          |

1010.7

| 11:Mention the types of p                                | ootentiometric (                   | itrations.                     |                                                                                                                | (1)                   |
|----------------------------------------------------------|------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                | •                     |
| 12.Plot the pH curve for tacid (the titrant). Sho point. | the titration of<br>ow approximate | a weak base (the pH values and | e analyte) with<br>mark the stoic                                                                              | a strong<br>hiometric |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
| 3. The ion which contribu                                | te to pH at the                    | stoichiometric p               | point for the tit                                                                                              | ration                |
| between hypochlorous                                     | acid & potassiu                    | ım hydroxide is                |                                                                                                                | _(1)                  |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
| 4. While titrating potassiu sometimes brown turbic       | m permangana<br>dity is seen.Wh    | te solution with               | ferrous salt sol                                                                                               | ution<br>(1)          |
|                                                          |                                    |                                | 200                                                                                                            | 327                   |
|                                                          |                                    |                                | 100 TO THE RESERVE T |                       |
|                                                          |                                    |                                | 「                                                                                                              | 21 <b>11</b> 10       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                |                       |
|                                                          |                                    |                                |                                                                                                                | *, ·                  |
| The basic character of a                                 | niline is due to                   |                                |                                                                                                                | (1)                   |

16. Schematically represent the experimental set up used for the preparation of acetanilide and mark the parts along with the chemicals required for the experiment. (1)

$$MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$$

18. In the preparation of acetanilide, using aniline & acetic anhydride, the amino group will be acting as a / an

(a)nucleophile in an alkylation reaction (b)electrophile in an alkylation reaction (c)nucleophile in an acylation reaction (d) electrophile in an acylation reaction

19. In any titrimetric analysis potassium permanganate solution is first standardized. Justify this giving suitable reason. (1)

### **BIOLOGY**

| Antil<br>Spor<br>ii. Roc<br>v. Bud | res b) Penicillium () is c) Fungi ()                                       | ( 2 Marks)          |
|------------------------------------|----------------------------------------------------------------------------|---------------------|
| v, <b>D</b> uo                     | Name the synthetic protein which you have used to obtain the stan          | dard curve in       |
| z.<br>Biuret                       | method, also mention the wavelength at which readings were taken           | (2 Marks)           |
|                                    |                                                                            |                     |
|                                    |                                                                            |                     |
| 2                                  | Why only root tip of Onion, Alium cepa is used to study the mitot          | ic division, but    |
| not any                            | y other part of the plant?                                                 | (2 Marks)           |
|                                    |                                                                            |                     |
|                                    |                                                                            |                     |
| <b>4</b> .                         | What are the functions of lymphocytes?                                     | (2 Marks)           |
|                                    |                                                                            | ing A<br>Managan sa |
|                                    |                                                                            |                     |
| 5.<br>norma                        | While estimating Hb by Sahli's method, blood is hemolysed with lity of HCl | (1 Mark)            |
| 6.<br>respec                       | Normal range of Hemoglobin in men is and in wortively.                     | men is<br>(2 Marks) |
| 8.                                 | The angle and size of the focused cone of light in a microscope is         | controlled (1 Mark) |
| by <sub>-</sub><br>9.              | Antibodies are produced bytype of cells in infant                          | in adult.           |

## BITS, PILANI – DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2004 – 2005 TA UC 222 MEASUREMENT TECHNIQUES – II TEST 2 (OPEN BOOK)

MAXIMUM MARKS: 20 DATE: 16.05.05

WEIGHTAGE: 20% DURATION: 50 MINUTES

1. A. What errors can be introduced when using wattmeters for the measurement of power? How these can be overcome? [4M]

- 1. B. A bridge is excited with a 1 KHz supply and has the following arms: A fixed resistor of  $1.5 \mathrm{K}\Omega$  in arm BC; a variable resistor adjusted to  $3 \mathrm{K}\Omega$  and a variable capacitor adjusted to  $47 \mu \mathrm{F}$  in arm CD; a variable resistor adjusted to  $2 \mathrm{K}\Omega$  in arm DA under balanced conditions. Find out the unknown resistance and inductance connected in the other arm. [3M]
- 1. C. Compare the features of a moving iron instrument with that of an electrostatic meter. Your answer should be in tabular form.

[ME]

- 2. In an Industrial application certain fluid is flowing on top and bottom surfaces of a metallic surface of diameter 2m. Metal's thermal conductivity is 50 W/m K while that of the fluid is 0.837W/m°C. Several temperature measurements indicate that the temperature gradient at all points in the vertical direction is 500°C/m, when the surface temperature is 30°C and free stream temperature is 100°C. With this available information, find the value of convective heat transfer coefficient? Also find the rate at which convection is taking place. [3M]
- 3. In viscosity measuring instruments that use Newton's law of viscosity, it is always desirable to have a linear velocity profile. Justify this statement by explaining the construction features and working principle of an instrument that uses Newton's law of viscosity.

  [3M]
- 4. In an experiment it is required to measure the time temperature history of a metallic object over a very small time interval. Which type temperature measuring instrument will you chose and why.

  [2.5M]
- With necessary diagrams explain the working of an Instrument used for calibration of Pressure gauges.
   [1.5M]

| 10. |                                                                 | e of Cell Cycl<br>(1 Mark) |
|-----|-----------------------------------------------------------------|----------------------------|
| 11. | Write the difference between magnification and resolving power. | (2 Marks)                  |
|     | •                                                               |                            |
|     |                                                                 |                            |
|     |                                                                 |                            |
|     |                                                                 |                            |
| 12. | Explain the principle of Beer Lambert's law.                    | (3 Marks)                  |

# BITS, PILANI – DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2004 – 2005 TA UC 222 MEASUREMENT TECHNIQUES – II TEST 2 (OPEN BOOK)

**MAXIMUM MARKS: 20** 

WEIGHTAGE: 20%

DATE: 16.05.05

**DURATION: 50 MINUTES** 

- 1. A. What errors can be introduced when using wattmeters for the measurement of power? How these can be overcome? [4M]
- 1. B. A bridge is excited with a 1 KHz supply and has the following arms: A fixed resistor of  $1.5 \mathrm{K}\Omega$  in arm BC; a variable resistor adjusted to  $3 \mathrm{K}\Omega$  and a variable capacitor adjusted to  $47 \mu \mathrm{F}$  in arm CD; a variable resistor adjusted to  $2 \mathrm{K}\Omega$  in arm DA under balanced conditions. Find out the unknown resistance and inductance connected in the other arm.
- 1. C. Compare the features of a moving iron instrument with that of an electrostatic meter. Your answer should be in tabular form.

[3M]

- 2. In an Industrial application certain fluid is flowing on top and bottom surfaces of a metallic surface of diameter 2m. Metal's thermal conductivity is 50 W/m K while that of the fluid is 0.837W/m°C. Several temperature measurements indicate that the temperature gradient at all points in the vertical direction is 500°C/m, when the surface temperature is 30°C and free stream temperature is 100°C. With this available information, find the value of convective heat transfer coefficient? Also find the rate at which convection is taking place. [3M]
- 3. In viscosity measuring instruments that use Newton's law of viscosity, it is always desirable to have a linear velocity profile. Justify this statement by explaining the construction features and working principle of an instrument that uses Newton's law of viscosity.

  [3M]
- 4. In an experiment it is required to measure the time temperature history of a metallic object over a very small time interval. Which type temperature measuring instrument will you chose and why.

  [2.5M]
- With necessary diagrams explain the working of an Instrument used for calibration of Pressure gauges.
   [1.5M]

## BITS, PILANI – DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2004 – 2005 TA UC 222 MEASUREMENT TECHNIQUES – II TEST 1(CLOSED BOOK)

**MAXIMUM MARKS: 20** 

DATE: 27.03.05

WEIGHTAGE: 20% DURATION: 50 MINUTES

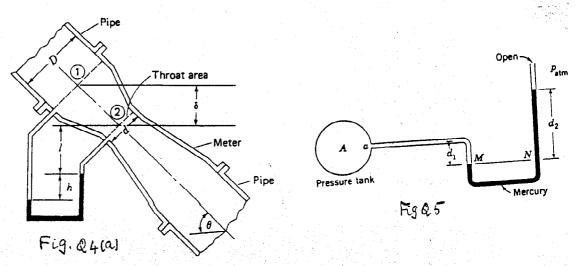
1. A 0-200 V voltmeter has a guaranteed accuracy of 2% of full scale reading. The voltage measured by this instrument is 50 V. Calculate the error. If you are the manufacturer, what suggestions will you offer so as to minimise the error?

[3M]

- 2. The measurement of impedance of a load is conducted by measuring the voltage across and current through the load. The voltmeter with an uncertainty of +/- 4% reads 125 V and the ammeter reads 10 A with an uncertainty of +/- 5%. Calculate the nominal value of impedance and its uncertainty. [4M]
- 3. Describe the principle of transduction of capacitive transducer in

[3M]

- i) angular displacement measurement
- ii) liquid level measurement
- 4(a). Refer Fig. Q4(a) which shows an inclined venturi meter. Derive an expression for  $V_2$  as a function of  $P_1$ ,  $P_2$ ,  $Z_1$ ,  $Z_2$ ,  $A_1$ ,  $A_2$  and  $\rho$ , where  $P_1$ ,  $P_2$  are pressure in Pascals at 1 and 2;  $Z_1$ ,  $Z_2$  are elevations at 1 and 2;  $A_1$ ,  $A_2$  are areas at 1 and 2 and  $\rho$  is the density flowing fluid.


[3M]

- 4(b) Water is flowing through the above venturi meter. If D = 100 mm, d=60 mm,  $\theta$  = 45°, axial distance from 1 and 2 is 120 mm, h=140 mm, specific gravity of manometric fluid is 13.6, density of water is 999 kg/m<sup>3</sup>.
- i) Find P<sub>1</sub>-P<sub>2</sub> in Pascals
- ii) Find V<sub>1</sub> and V<sub>2</sub> in m/s
- iii) Find theoretical flow rate in m<sup>3</sup>/s

[2M+2M+1M]

5. Refer Fig. Q5 which shows simple U tube manometer. Starting from the first principles get an expression for gauge pressure at A as a function of  $d_1$ ,  $d_2$ , density of fluid in tank A and density of mercury.

[2M]

