BITS, PILANI – DUBAI CAMPUS

Knowledge Village, Dubai

Year II - Semester II 2004 - 2005

Comprehensive Examination (Closed Book)

CIRCUITS & SIGNALS EEE UC 272 / INSTR UC 272

Date: 22 - 05 - 05

Time: 3 hrs

Max Marks= 60

Weightage = 40 %

Answer ALL Questions
All Questions Carry Equal marks
(Answer all part of the same question together)

1 (a). Sketch the even and odd components of the function

$$g(t) = 8 + 7 t^2$$

(b). Find the derivative of the function f (t) shown in figure 1 and draw the waveform

Figure 1

(c) Represent the given function f(t) in the graphical form

$$f(t) = 5 u(t) - 3 u(t-3) - 2 u(t-5)$$

(3+4+3)

- 2 (a) State and prove the frequency shifting property of Fourier transform
 - (b) Derive the Laplace transform of the periodic signal shown in figure 2

Figure 2

(c). Find the Z-transform of $f(n) = Sin(\omega_0 n) u(n)$

(3+4+3)

3 (a) Consider the circuit shown in figure 3. The switch has been in position '1' for long time. It is thrown to position '2' at t = 0. Solve for the current i(t) using

Laplace transform

4.0

12.V

2 10.F

Figure 3

(b) Find the inverse Z-transform of

$$\frac{z+z^{-1}}{z(1+\frac{1}{8}z^{-1})}$$

(6+4)

4. (a) The transfer function of a system is given as

$$H(s) = \frac{s}{s^2 + 2s + 5}$$

If the input to the system x(t) = 100 u(t), find the output y(t) using convolution Integral.

(b) Consider a causal LTI system whose input x[n] and output y[n] is related by the difference equation $y[n] = \frac{1}{4} y[n-1] + x[n]$ Determine y[n] if $x[n] = \delta[n-1]$ (5+5)

5 (a) Perform the circular convolution of the following sequences

$$f_1(n) = \{1234\}$$
, $f_2(n) = \{2222\}$

- (b) Calculate the DFT of the time sequence given by $f(k) = \{0, 2, 1, 0\}$ (5+5)
- 6 (a) Differentiate between FIR and IIR filter
 - (b) Design a Low Pass Butterworth filter whose maximum amplitude is unity at $\omega = 0$ rad/s and at 100 rad/s the amplitude becomes 0.5 times the maximum amplitude. The cut-off frequency $\omega_c = 62.8$ rad/s where the amplitude is 0.707 times that of maximum amplitude. (3+7)

BITS - PILANI DUBAI CAMPUS

Knowledge Village, Dubai II semester II Year

Circuits & Signals EEE / INSTR UC 272

Test II / 08 - 05 - 05(Closed Book) Time: 50 min. Max. Marks: 30 1. Consider the system characterized by the differential equation $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = x(t)$ a. Determine the zero state response of the system for the input $x(t) = e^{-t} u(t)$ (6)b. Determine zero input response of the system for t > 0 given that y(0) = 1; $\dot{y}(0) = -1$; $\dot{y}(0) = 1$ (6)b. Determine the output when the input is $x(t) = e^{-t} u(t)$ and the initial conditions are the same as those specified in 1(b) (3) 2. The i/p - o/p relation ship of a LTIDT system is described by the difference equation given below with the initial conditions $y(n+2) - 3/2 y(n+1) + \frac{1}{2} y(n) = x(n)$ for $n \ge 0$ Determine the zero state response of the system for $x(n) = (1/4)^n$ a. (6)Determine the zero input response of the system for t > 0 given that Ъ. y(0) = 10; y(1) = 4;(6) Determine the output when the input is $x(n) = (1/4)^n$ and the initial conditions are the same as those specified in 2(b) (3)

BITS, PILANI - DUBAI CAMPUS

Knowledge Village, Dubai

Year II - Semester II 2004 - 2005

Test I (Closed Book)

Course No.:

EEE UC 272 / INSTR UC 272

Course: Circuits & Signals

20 - 03 - 05

Time: 50 Minutes

M.M. = 30

Weightage = 15 %

1(a). For the network shown in figure, determine the Z parameters.

 (1.5×4)

- 2. (a) Define i) a Linear system
- ii) An Impulse signal
- (2+2)

(b) Evaluate $\int_{-\infty}^{\infty} e^{(x-1)} \cos [\pi/2 (x-5)] \delta(x-3) dx$

- (2)
- 3. The unit Impulse response of a LTIC system is given by h(t) =system's zero-state response y(t) if the input $f(t) = e^{-t} u(t)$.
- cos 3t u(t). Find the

- 4. For the signal shown
 - (a) write a single expression f(t) valid for all time t.
 - (b) Sketch f(2t) & f(t/3)
 - (c) Sketch f(t-2) & f(2-t)

- 5. Find the exponential Fourier series for the continuous time periodic signal given by
 - f(t) = 1.5

- $0 \le t \le 1$
- = -1.5
- $1 \le t \le 2$

with a fundamental frequency $\omega_o = \Pi$

 (1.5×4)
