BITS, Pilani-Dubai Campus Knowledge Village

II Year - II Semester 2003 - 2004 MT-1

COURSE NO	:; MARN	5. <u>60</u>	···		<u> </u>
EXAM N NOTE:	(Data provided a	re complete. Son	me question	ns might have monly the final answer the additional sheet	re than one in the space
provided be	low the questions	. Working may ov		the additional sheet	
		BIOLO	GY		
Each q	uestion carries 2	marks		Max. Ma	rks:20
		ketch of a typical o	compound l	ab microscope.	
		a microscope depo		and_	
3. A	bsorbance reading	gs during protein and at	estimation	were taken using wavelength.	the instrument
4. N	latch the followin	g most appropriate	ely:(mark yo	our answer within b	rackets)
1 2 3	.Anemia .Erythrocytes .Immunity .Phagocytosis	A) Blood Typi B) Lymphocyt C) Neutrophils D) Hemoglobi	ng () es ()		

		•	
6.	Temporary increase in certain type of WBC dur	ing a narticular dise	ace state is know
	as, Example:	ing a particular disc.	ase state is know.
*		*	
7.	Match the following most appropriately:(mark you	ur answer within brad	ckets)
	1 Matheday Divo C. A		
	1. Methylene Blue & Acetic acid A) Biuret 2. Copper B) RBC	()	
	2.Copper B) RBC C) WBC	()	
	4. Hayem's Fluid D) Hemoglo	obin ()	
		, , , , , , , , , , , , , , , , , , ,	
8.	If a man's blood group is B then he has	Antigen ,	Antibody
	and can only receive blood from	•	
9.	Calculate Duration of Mitosis from the following	data given the durat	ion of call cycle i
- •	16 hrs.	data given me durat	ion or cen cycle is

5. Sketch a representation of typical cell cycle and its phases.

STAGE	Nos.
Prophase	16
Metaphase	6
Anaphase	3
Telophase	1
Total No. Of Cells	220

10. A technician in a clinical lab diluted a blood sample to 20 times and counted 175 cells in four square grids of a neubauer chamber. What are the cells he was counting and give the total count along with the formula.

Ans:

CHEMISTRY

a m - total conduc	ctance of one m	nole of sulphur	ric acid present in 1000 c.c. solution	on
is its	mande of other	· -		
() if a cond	nctance (b) equ	ivalent condu	ctanc	(1)
(c) molar condu	ictance (d)cub	ic conductanc	e .	(1)
(c) molar condu	ictation (c)			_
12. A salt X is disso	olved in distilled	d water, the re	sulting solution is acidic, the salt i	S
made up of			(b) weak acid & weak base	
(a) strong acid (c)strong acid &	& strong base & weak base		(d) weak acid & strong base	(1)
		It is found that	at the rate of reaction triples when reaction is:	the
13. For a chemical	s increased nine	e times. The o		(1)
concentration	(b) One	(c) Two	(d) Three	(1)
(a) Half	(0) One	* . · · · · · · · · · · · · · · · · · ·		مامند
	-talahiometric (point of the hy	pochlorous acid Vs sodium hydro	(1)
14. The pH at the	to the presence	e of	ions.	(1)
titration is due	to the bresene.		•	•
			1 1 1 1	as (1)
15. Molisch's test	datacts the DTE	esence of	group in Carbohydrat	es.(1)
15. Molisch's test	detects the pre			
			in the second of	
**	half way to sto	oichiometric p	oint of the titration between a stro	ш у (1)
16. The pH at the base & weak	acid is 4.5. Cal	culate its ioniz	ration constant?	(1)
w4				
		•		
			of acetanilide	(1)
17 Write the ba	lanced chemica	d equation for	the preparation of acetanilide	•
17. 447100 0770 077				

18.	Name the acidic and the basic center of the reaction between aniline and acetyl chloride in acetic acid medium.	(1)
10	Suggest the role of glacial acetic acid & zinc dust in the preparation of	
	acetanilide.	(1)
2	 What happens when sodium bicarbonate solution is added to succinic acid? W the balanced chemical equation. 	rite (1)
		(4)
. 2	21. Why carboxylic acids are more acidic than corresponding alcohols?	(1)

22. Why is acidic medium (sulphuric acid) required for the titration of potassium permanganate and ferrous sulphate? Can HCl be used instead? (1)

23. The degree of dissociation of a weak monobasic acid is 8 x 10⁻³. Calculate the dissociation constant of its 0.5 M aqueous solution? (2)

24. Which compound is responsible for the red color for the fehling test of reducing sugar? Write the relevant chemical equation. (1)

25. Balance the following redox equation in acidic medium

Mn²⁺ + PbO₂→ MnO₄ + Pb²⁺

(2)

26. For the reaction, $A + B \rightarrow products$

For the remains	i	CCtion
Initial conc. mol/l	Initial conc. mol/l	Initial rate of formation of products (mol/l/s)
	0.1	0.2
0.1	0.1	0.4
0.2	0.1	0.6
0.3	0.1	2.4
0.3	0.2	5.4
0.3	[0.3	

- (a) Give the rate law equations for this reaction using the data in the table above.
- (b) What is the overall order of reaction?
- (c) Calculate the value of rate constant, showing the unit.

(3)

PHYSICS

Possibly for use

Possibly for use
$$\{c = 2.998 \times 10^8 \text{ m} \cdot \text{s}^{-1}; \quad \mu_0 = 4\pi \times 10^{-7} \text{ N A}^{-2}; \quad \epsilon_0 = 8.85 \times 10^{-12} \text{ F} \cdot \text{m}^{-1}; \\ h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}; \quad e = 1.602 \times 10^{-19} \text{ C}; \quad m_e = 9.1 \times 10^{-31} \text{ kg}; \quad m_p = 1.67 \times 10^{-27} \text{ kg}\}$$

- 27. A box rests on a frozen pond, which serves as a frictionless horizontal surface, if a fisherman applies a horizontal force with magnitude 48.0 N to the box and produces an acceleration of magnitude 3.00m/s². What is the mass of the box? [2]
- 28. The current developed in a thermopile when it is exposed to light from a lamp is due to
 - i. only heat from the source
 - ii. heat and light from the source
 - iii. only light from the source
 - iv. none of the above.
 - 29. An ultraviolet light bulb, emitting at 400nm, and an infrared light bulb, emitting at 700nm, each are rated at 130W. Which bulb would cause more photoelectric [1] current? Why?
 - 30. In the following Figure please indicate under which condition do you get the respective plot for 'Characteristics of a solar cell'?

- 31. An atom is excited to an energy level E₁ from its ground state energy level E₀.

 The wavelength of the radiation emitted as [1]
 - i. $(E_0-E_1)/hc$
 - ii. $(E_1-E_0)/h$
 - iii. $hc/(E_1-E_0)$.
 - iv. $(E_1 / hc) (E_0 / hc)$.
 - $v. h/(E_1-E_0)$
- 32. Plot a graph to depict the dependence of Hall voltage (V_H) on applied magnetic field (B) as you have experimentally observed. [1]

33. In the following figure, specify the higher potential of Hall voltage set in the two specimens. X - disection & B [2]

34. Draw the circuit diagram of parallel RLC circuit for measuring current. Plot the graphs showing the dependence of current resonance on damping resistance. [2]

- 35. How can you calculate the Q-factor from the plots you have drawn above? [1]
- 36. A table tennis ball is thrown at a stationary bowling ball. The table-tennis ball makes a one-dimensional elastic collision and bounces back along the same line. After the collision, compared to the bowling ball, the table-tennis ball has [1]
 - i. A larger magnitude of momentum and more kinetic energy
 - ii. A smaller magnitude of momentum and more kinetic energy
 - iii. A larger magnitude of momentum and less kinetic energy
 - iv. A smaller magnitude of momentum and less kinetic energy
 - v. The same magnitude of momentum and the same kinetic energy.
 - 37. The hydrogen spectrum has a red line at 656 nm and a blue line at 434 nm. What is the angular separation between the first order spectral lines obtained with diffraction grating that has 4500 lines/cm?
 - 38. An electron has a de-Broglie wavelength of 2.80x10⁻¹⁰m. Determine (a) the magnitude of the momentum (b) its kinetic energy
 - 39. When white light is incident on a diffraction grating, the light that will be deviated the maximum from central image will be
 - i. Yellow

- ii. Violet
- iii. Indigo
- iv. Red

40. A positive ion is projected in a direction perpendicular to a uniform magnetic field with velocity 'v' (as shown in the figure below). How will its motion be affected?

- 41. How much magnetic field and current is required to make a proton move in a radius of 5 cm in a region between two Helmholt coils of radius 0.2 m and 200 turns?
- 42. Suppose that a laser produces green light instead of the red light produced by the He-Ne laser. Are the photons emitted by this laser [1]
 - i. more energetic
 - ii. less energetic
 - iii. of equal energy

as compared to those emitted by He-Ne laser?

- 43. In laser diffraction experiment instead of 632.8 nm wavelength (red color) if we use a wavelength of 800.0 nm, what pattern should we expect to see on the screen?
- 44. A light with frequency well above the cutoff frequency is incident on the emitter in a photoelectric-effect apparatus. The frequency of the light is then doubled while the intensity is kept constant.
 - (a) How does this affect the stopping potential?
 - i. The stopping potential would increase
 - ii. The stopping potential would increase
 - iii. The stopping potential will remain the same.
 - (b) How does this affect the photoelectric current?

iii. C/m.s

iv. C.m/s

51. Define Coercive field. Draw a Hysteresis loop showing the remanence and [2] coercive field.

52. In the experiment, Vibrations of strings, which mode of vibration do we measure? [1] Why? (Answer in one line)

53. When standing wave is set up on a string fixed at both ends

[1]

- i. the number of nodes is equal to the number of antinodes
- ii. the wavelength is equal to the length of the string divided by an integer
- iii. the frequency is equal to the number of nodes times the fundamental frequency
- iv. the shape of the string at any time is symmetric about the midpoint of the string

BITS, PILANI – DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2003 - 2004

TA UC 222 MEASUREMENT TECHNIQUES - 2 TEST 2 (OPEN BOOK) **DURATION: 50 MINUTES WEIGHTAGE: 20%**

Date: 23/05/04

MAXIMUM MARKS: 20

1. With the help of examples, differentiate between primary and secondary methods of measuring flow rates.

2. "When it is required to measure point velocities of air flowing through a tube, the pressure-measuring device should have a high sensitivity." Explain the reason.

A pitot static tube is fitted at the nose of an airplane. A u – tube water manometer connected to it shows a deflection of 10cm of water. Find the velocity of the airplane. Take the density of air to be 1.2 kg/m³.

- 3. In a certain laboratory experiment, water is passing over a flat plate of dimensions 1m x 2m. The flat plate is being heated by sending 10 amperes current to the resistive element embedded in the plate. The current is supplied from a 240volts source. Temperature of surface is measured to be 140°C where as free stream temperature of the fluid is 30°C. Calculate the convective heat transfer coefficient.
- 4. "Thermal conductivity is a property of the material and Convective heat transfer coefficient is not a property of the material." Do you agree with this statement? Justify your answer.

5. Refer figure, which shows a vegetation map. Explain various methods that can be used to find the total area of vegetation.

6. Find the current through the detector in the circuit given below. Assume that the detector has a resistance of 100 Ω and the battery has a negligible internal resistance. [3M]

- 7. Name two substances that experience a reduction in resistance upon the exposure to light. Where do these materials find their application? [1M+1M]
- 8. What are the factors that affect the resolution and linearity of the variable resistance transducer? [2M]
- 9. What do you understand by the following terms? Explain.

[3M]

- (i) Loading Effect.
- (ii) Time base generator.