BITS PILANI, DUBAI CAMPUS FIRST SEMESTER 2012-2013

Comprehensive Exam

Date: 31.12.2012

Course Title: Genetics Maximum Marks: 40

Course NO: BIOT C332/F243

Weightage: 40%

93

14

a b c

a b c +

Duration: 3 hours

IVIDATION	111 14101 K3. 40	vveigiii	age . 40/0	Duration, 5 flours		
Attempt all the questions in the given sequence						
Q1a. Des	cribe the even	ts that occur du	ring the V-J joir	ing.	[3]	
b. Explair	b. Explain the role of nitrous acid in DNA mutations.					
c. Discus	s the role of <i>cll</i> .	protein in the l	ambda phage r	epressor transcription.	[2]	
d. What a	are the differer	nt subunits of RN	IA polymerase	II. Describe the role of each in transcrip	ption.[3]	
Q2a. Exp	lain the Dideox	y method of DN	A sequencing.	Emphasize with a neat diagram	[3]	
b. Explair	J Crain's expe	riment to verify	the semiconse	rvative method of DNA replication. Also	mention	
his interp	retations.				[2]	
c. Estima	c. Estimate the amount of energy spent in making a 10 amino acid peptide. [2]					
d. DNA fr	om a bacterial	strain that is a [†] l	b ⁺ c ⁺ is used to	transform a strain that is a b c .The nu	mbers of	
each tran	sformed genot	ype appear. Wh	at can we say a	bout the relative position of the genes	? [3]	
	Genotype	Numbers				
	a b c	214				
	a b c	231				
	a b c ⁺	206				
	a⁺ b⁺ c⁻	11				
	a [†] b [†] c [†]	6				
	\					

Q3a. Explain the terms: i. consensus sequence; ii. Conservative transposons; iii. electroporation;
iv. coefficient of coincidence [2]
b. Two agouti mice are crossed, and over a period of a year they produce 48 offspring with the following
phenotypes: 28 agouti mice 7 black mice 13 albino mice
What is your hypothesis about the genetic control of coat color in these mice? Do the data support that
hypothesis? (p < 5.991 at 2,0.05) [2]
c. Why is generalized transduction preferred over the specialized transduction for gene mapping? [2]
d. PKU and albinism are two autosomal recessive disorders, unlinked in human beings. If two people,
each heterozygous for both traits, produce a child, what is the chance of their having a child with
i. PKU? ii. either PKU or albinism? iii. both traits? [2]
e. To clone a particular gene the scientists must have a purified ds piece of DNA containing that gene.
Suggest two methods of obtaining these ds DNA. [2]
Taggest two methods of obtaining these as DNA.
Q4a. Explain the maternal inheritance of coiling in snails. Emphasize with a neat diagram. [3]
b. Name the two classes of proteins involved in chromatin remodeling. [2]
c. Within a population of butterflies, the color brown(B) is dominant over the color white, and 40% of all
butterflies are white. Given this information, calculate the following. [2]
i. The percentage of butterflies in the population that are heterozygous
ii. The frequency of homozygous dominant individuals.
d. In garden peas, long stems are dominant to short stems, and yellow seeds are dominant to green
seeds. 100 long/yellow pea plants, all of which has one short/green parent, are interbred. 1600 progeny
result. Please answer the following questions about the progeny. [3]
i. Assuming that these two genes are unlinked, about how many long/green pea plants would you
expect to find among the offspring ?
ii. What would be the number of yellow seed colour pea plants among the offspring?
iii. What would be the number of short stem pea plants among the offspring?

***ALL THE BEST*

and you

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY FIRST SEMESTER 2012-2013 TEST – 2 (OPEN BOOK)

Course No.: BIOT C332/BIOT F243

18.11.12

Maximum Marks: 20

Course Title: Genetics

Maximum Time: 50 mins

Only Prescribed Text Books and Hand Written notes are allowed.

Answer all the questions in the given sequence. Draw a neat diagram wherever necessary.

1. Suggest a method/s of DNA repair mechanism during replication, to reverse the damage caused due to exposure to UV light. [4]

2. In *Neurospora*, a cross is made between ab^+ and a^+b individuals. The following one hundred ordered tetrads are obtained:

Spores	I	II	III	IV	V	VI	VII	VIII
1,2	a^+b	$a^{\dagger}b$	a^+b	a^+b^+	a^+b^+	a ⁺ b	a^+b	ab^{\dagger}
3,4	$a^{\dagger}b$	a^+b^+	$a^{\dagger}b^{\dagger}$	$a^{\dagger}b$	a^+b	ab ⁺	ab^+	$a^{\dagger}b$
5,6	ab^+	ab	ab^{\dagger}	ab	ab^{+}	a ⁺ b	ab ⁺	a^+b
7,8	ab^{+}	ab^{\dagger}	ab	ab^+	ab	ab ⁺	$a^{\dagger}b$	ab^+
	79	3	4	3	3	3	3	2

- a. are genes a and b linked? How do you understand?
- b. Calculate the gene-to-centromere distances for *a* and *b*.

[2] [4]

3. What is interrupted mating? How is it used in gene mapping?

[2]

4. In a transformation experiment, a his⁺ lue⁺ trp⁺ strain is used as a donor and an his⁻ leu⁻ trp⁻ strain as the recipient. Two hundred his⁺ trasformants are selected and checked for lue⁺ and trp⁺. What can you conclude about the relative position of the genes, based on the data provided? [3]

his ⁺ leu` trp`	44
his * lue * trp *	142
his ⁺ lue ⁺ trp ⁻	6
his ⁺ lue ⁺ trp ⁺	8

5. Give the significance of single and double crossover events in recombination.

[2]

6a. Mention the different methods for joining two incompatible pieces of DNA.

[1.5]

b. How can we manipulate a prokaryotic vector to survive in Saccharomyces cerevisiae? [1.5]

(y) yu

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY FIRST SEMESTER 2012-2013 TEST - I (CLOSED BOOK)

Course No.: BIOT C332/BIOT F243 **Maximum Marks: 25** 30.09.12 **Course Title: Genetics Maximum Time: 50 mins** Answer all the questions in the given sequence. Draw a neat diagram wherever necessary. 1. Explain the Meselson and Stahl experiment. [4] 2. Explain the self splicing of introns in the eukaryotic RNA. [3] 3. The replication of the lagging strand of DNA is discontinuous. Justify. [3] 4. Write a short note on the Terminators of prokaryotic Transcription. [4] 5. What is the key role of the enzymes topoisomerase IV, DNA ligase, DNA polymerase I and Helicase? [2] Diagrammatically explain the Hershey and chase experiment. [3] 7. Justify the differences between eukaryotic and prokaryotic transcription [3] 8. What are enhancer and silencer regions? Where are they located? [3]

2 ym

BITS Pilani, Dubai Campus

1st Semester 2012- 2013

Genetics BIOT C332/BIOT F243

Quiz - 2 (Close book)

Date: 18/12/12 (Tu)	Duration: 20 minutes	Weightage: 7% (Max Marks 7)
Id No:	Name:	

1. Who is the daddy? This mother is trying to decide between two men who desperately wants to support her and her newborn baby. Both want to be a part of the baby's life, because they love the mother so much. Who gets the honor and privilege? [1]

2. Explain catabolite repression in *lac* operon. [2]

3. Give the significance of the leader transcript in <i>trp</i> operon. [1]					
4	and	are the two a	ntiterminators for lytic cyc	cle. [1]	
		ambda lysogen is exposed			
6. With the help of	f a neat labeled diagran	n show the duplication of	target site due to transpo	sition. [1]	

Date: 18/10/12 (Th)

BITS Pilani, Dubai Campus 1st Semester 2012- 2013

Genetics BIOT C332/ BIOT F243

Duration: 20 minutes

Quiz – 1 (Close book)

Weightage: 8% (Max Marks 8)

1 No: N	ame:		Makes, Aparta andrea, andrea andrea andrea Makes,
1. What is the scanning hypothe		[1]	
1. What is the scanning hypothe	313;	[±]	
•			
2. What is molecular mimicry?			[1]
3. Luria and Delburck studied the		mutants of <i>E.coli</i> stra	
test.			[1]
4. What is a cistron?			[1]

5. Point mutations could be lethal in some cases, while could go unnoticed in som	ne. Justify. [2]
6. Explain the mechanism of transversion mutations.	[2]