

I Semester 2012-2013 II YEAR EEE/ECE/EIE

COMPREHENSIVE EXAMINATION

Course No. ECE F214 / EEE F214 /INSTR F214

Date: 31-12- 2012

Weightage: 40%

weightage. 40%

Course Title: Electronic Devices

Max.Marks: 80

Duration: 3 Hours

Important Notes

• Answer all the questions.

• Draw neat sketches wherever necessary.

Make suitable assumptions if required and clearly state them

• Write PART A and PART B in separate answer book

PART A

- Determine the volume density of germanium atoms in a germanium semiconductor. The lattice 5M constant of germanium is 5.65 Å. Calculate its density, given that the atomic weight is 72.6 g/mol and the Avogadro number is 6.023 x 10²³ atoms/mol.
- The position of an electron is determined to within 1 Å. What is the minimum uncertainty in its 5M momentum?
- Assume that Si has dopant concentration of $N_D = 1 \times 10^{13}$ cm⁻³ and $N_A = 2.5 \times 10^{13}$ cm⁻³ at T = 15M 300°K. For Si, $n_i = 1.5 \times 10^{10}$ cm⁻³
 - a) Is this material n type or p type?
 - b) Calculate n_o and p_o.
 - c) Where is E_f relative to E_i? Sketch the energy band diagram.
- In a very long p-type Si bar with cross-sectional area = 0.5 cm² and Na= 10^{17} cm⁻³, we inject holes 15M such that the steady state excess hole concentration is 5 x 10^{16} cm⁻³ at x = 0. Assume $\mu_p = 500$ cm²/V-s and $\tau_p = 10^{-10}$ s.
 - a) What is the steady state separation between F_p and E_c at x = 1000 Å?
 - b) What is the hole current there?
 - c) How much is the excess stored hole charge?

PART A

1. Determine the volume density of germanium atoms in a germanium semiconductor. The lattice constant of germanium is 5.65 Å. Calculate its density, given that the atomic weight is 72.6 g/mol and the Avogadro number is 6.023 x 10²³ atoms/mol.

[5 M]

Solution

$$\frac{8}{a^3} = \frac{8}{(5.66 \times 10^{-8})^3} = 4.41 \times 10^{22} atoms/cm^3$$

$$density = \frac{4.41 \times 10^{22} \times 72.6}{6.023 \times 10^{23}} = 5.32g/cm^3$$

2. The position of an electron is determined to within 1 Å. What is the minimum uncertainty in its momentum? [5 M]

Solution

$$\Delta p_x \approx \frac{\hbar}{\Delta x} = \frac{6.63 \times 10^{-34}}{2 \times 3.14 \times 10^{-10}} = 1.06 \times 10^{-34} \ kg.m/s$$

- 3. Assume that Si has dopant concentration of N_D = 1 x 10^{13} cm⁻³ and N_A = 2.5 x 10^{13} cm⁻³ at T = 300°K. For Si, $n_i = 1.5 \times 10^{10}$ cm⁻³
 - a) Is this material n type or p type?
 - b) Calculate n_o and p_o.
 - c) Where is E_f relative to E_i? Sketch the energy band diagram.

[5+5+5 M]

Solution

- a) $N_A >> N_D$, therefore, p type material
- b) Charge neutrality requires $n_0+N_A^-=p_0+N_D^+$ and $n_0p_0=n_i^2$ Therefore $p_0=\frac{-(N_D-N_A)\pm\sqrt{(N_D-N_A)^2+4n_i^2}}{2}$ $(N_D-N_A)=(1\text{x}10^{13})-(2.5\text{x}10^{13})=1.5\text{x}10^{13}$

Therefore
$$p_0 = \frac{(N_D - N_A)^2 \sqrt{(N_D - N_A)^2 + (N_D - N_A)^2}}{2}$$

 $(N_D - N_A) = (1 \times 10^{13}) - (2.5 \times 10^{13}) = 1.5 \times 10^{13}$

$$p_0 = 1.5 \times 10^{13} \text{ cm}^{-3}$$

$$n_o = 1.5 \times 10^7 \text{ cm}^{-3}$$

c) $E_i - E_F = kT ln \frac{p_0}{n_i} = 0.0259 ln \frac{1.5 \times 10^{13}}{1.5 \times 10^{10}} = 0.179 eV$

- 4. In a very long p-type Si bar with cross-sectional area = 0.5 cm² and Na= 10^{17} cm⁻³, we inject holes such that the steady state excess hole concentration is 5 x 10^{16} cm⁻³ at x = 0. Assume μ_p = 500 cm²/V-s and τ_p = 10^{-10} s.
 - a) What is the steady state separation between F_0 and E_c at x = 1000 Å?
 - b) What is the hole current there?
 - c) How much is the excess stored hole charge?

[5+5+5 M]

Solution

$$\begin{split} D_p &= \frac{kT}{q} \mu_p = 0.0259 \times 500 = 12.95 \, \mathrm{cm}^2 / \mathrm{s} \\ L_p &= \sqrt{D_p \tau_p} = \sqrt{12.95 \times 10^{-10}} = 3.6 \times 10^{-5} \, \mathrm{cm} \\ p &= p_0 + \Delta p e^{-\frac{x}{L_p}} = 10^{17} + 5 \times 10^{16} e^{-\frac{10^{-5}}{3.6 \times 10^{-5}}} \\ &= 1.379 \times 10^{17} = n_i e^{(E_i - F_p)/kT} = (1.5 \times 10^{10} \, \mathrm{cm}^{-3}) e^{(E_i - F_p)/kT} \\ E_i - F_p &= \left(\ln \frac{1.379 \times 10^{17}}{1.5 \times 10^{10}} \right) \cdot 0.0259 = 0.415 \, \mathrm{eV} \\ E_c - F_p &= 1.1/2 \, \mathrm{eV} + 0.415 \, \mathrm{eV} = \mathbf{0.965} \, \mathrm{eV} \end{split}$$

Hole current:

$$\begin{split} I_p &= -qAD_p \frac{dp}{dx} = qA \frac{D_p}{L_p} (\Delta p) e^{-\frac{x}{L_p}} \\ &= 1.6 \times 10^{-19} \times 0.5 \times \frac{12.95}{3.6 \times 10^{-5}} \times 5 \times 10^{16} e^{-\frac{10^{-5}}{3.6 \times 10^{-5}}} \\ &= 1.09 \times 10^3 \text{A} \\ Q_p &= qA(\Delta p) L_p \\ &= 1.6 \times 10^{-19} (0.5) (5 \times 10^{16}) (3.6 \times 10^{-5}) \\ &= 1.44 \times 10^{-7} \text{C} \end{split}$$

I Semester 2012-2013 II YEAR EEE/ECE/EIE Test 2 (OPEN BOOK)

Course No. ECE F214 / EEE F214 / INSTR F214

Course Title: Electronic Devices

Date: 18-11-2012

Max.Marks: 40

Weightage: 20%

Duration: 50 min

Important Notes

• Answer all the questions.

• Draw neat sketches wherever necessary.

• Make suitable assumptions if required and clearly state them

Q.1 In the Haynes – Shockley experiment calculate the hole lifetime τ_p in an n-type sample. 10M Assume the peak voltage of the pulse displayed on the oscilloscope screen is proportional to the hole concentration under the collector terminal at time t_d , and that displayed pulse can be approximated as a Gaussian, as in

$$\delta p(x,t) = \frac{\Delta p e^{-t/\tau_p}}{\sqrt{4\pi D_p t}} \exp\left(-\frac{x^2}{4D_p t}\right)$$

which decays due to recombination by $\exp(-t/\tau_p)$. The electric field is varied and the following data taken: For t_d = 200 s, the peak is 20 mV; for t_d = 50 s, the peak is 80 mV. What is τ_p ?

- Q.2 Calculate the electron and hole densities in an n-type silicon wafer ($N_d = 10^{17} \text{ cm}^{-3}$) 10M illuminated uniformly with 10 mW/cm² of red light ($E_{ph} = 1.8 \text{ eV}$). The absorption coefficient of red light in silicon is 10^{-3} cm^{-1} . The minority carrier lifetime is 10 ms.
- Q.3 A silicon pn junction at T=300K with zero applied bias has doping concentrations 10M $N_d=5x10^{16}$ cm⁻³ and $N_a=5x10^{15}$ cm⁻³. Determine the penetration of the transition region into n and p type materials, space charge width and maximum value of the electric field. (Intrinsic concentration $n_i=1.5x10^{10}$ cm⁻³)
- Q.4 An abrupt Si p-n junction has $N_a=10^{17}$ cm⁻³, on the p side and $N_d=10^{16}$ cm⁻³ on the n side. 10M At 300K,
 - a) Calculate the Fermi levels, and draw an equilibrium band diagram and find V_0 .
 - b) Compute the V_0 from the equation which relates doping concentrations. (Intrinsic concentration $n_i=1.5\times10^{10}$ cm⁻³)

1. In the Haynes – Shockley experiment calculate the hole lifetime τ_p in an n-type sample. Assume the peak voltage of the pulse displayed on the oscilloscope screen is proportional to the hole concentration under the collector terminal at time t_d , and that displayed pulse can be approximated as a gaussian, as in

$$\delta p(x,t) = \frac{\Delta p e^{-t/\tau_p}}{\sqrt{4\pi D_p t}} \exp(-\frac{x^2}{4D_p t})$$

which decays due to recombination by $\exp(-t/\tau_p)$. The electric field is varied and the following data taken: For t_d = 200 s, the peak is 20 mV; for t_d = 50 s, the peak is 80 mV. What is τ_p ? [10M] Solution

To include recombination, let the peak value vary as exp(-t/τ₀)

$$\delta p(x,t) = \frac{\Delta p e^{-t/\tau_p}}{\sqrt{4\pi D_p t}} \exp(-\frac{x^2}{4D_p t})$$

At the peak (x=0),V_p = peak =B $\frac{\Delta p e^{-t/\tau p}}{\sqrt{4\pi D_p t}}$, where B =constant

$$\frac{v_{p_1}}{v_{p_2}} = \sqrt{\frac{t_2}{t_1}} \frac{e^{-t_1/\tau_p}}{e^{-t_2/\tau_p}} = \sqrt{\frac{t_2}{t_1}} e^{t_2 - t_1/\tau_p} \Rightarrow \frac{80}{20} = \sqrt{\frac{200}{50}} e^{150/\tau_p}$$

$$\tau_p$$
 = 216.4 µs

2. Calculate the electron and hole densities in an n-type silicon wafer ($N_d = 10^{17} \text{ cm}^{-3}$) illuminated uniformly with 10 mW/cm² of red light ($E_{ph} = 1.8 \text{ eV}$). The absorption coefficient of red light in silicon is 10^{-3} cm^{-1} . The minority carrier lifetime is 10 ms. [10M]

The generation rate of electrons and holes equals:

$$G_n = G_p = \alpha \frac{P_{opt}}{E_{ph}A} = 10^{-3} \frac{10^{-2}}{1.8 \times 1.6 \times 10^{-19}} = 3.5 \times 10^{13} \text{ cm}^{-3}$$

where the photon energy was converted into Joules. The excess carrier densities are then obtained from:

$$\delta n = \delta p = \tau_p G_p = 10 \times 10^{-6} \times 3.5 \times 10^{12} = 3.5 \times 10^8 \text{ cm}^{-3} \text{s}^{-1}$$

The excess carrier densities are then obtained from: So that the electron and hole densities equal:

$$n = n_o + \delta n = 10^{17} + 3.5 \times 10^{13} = 10^{17} \text{ cm}^{-3} \text{s}^{-1}$$

I Semester 2012-2013 II YEAR EEE/ECE/EIE

Test 1 (Closed Book)

Course No. ECE F214 / EEE F214 /INSTR F214

Course Title: Electronic Devices

Date: 30-09-2012

Max.Marks: 50

Weightage: 25%

Duration: 50 min

Important Notes

Answer all the questions.

Draw neat sketches wherever necessary.

Make suitable assumptions if required and clearly state them

• Weightage is given for formula and steps written

- Compute the interplanar spacings for the (110) and (221) sets of planes for aluminum which has an FCC crystal structure and an atomic radius of 0.1431 nm. [8MARKS]
- 2. a) Sketch the (2 4 3) plane in a cube of lattice constant 0.6 nm.
 - b) Find the Miller indices of the planes shown below

[5X2=10MARKS]

- 3. a) The lattice constant of GaAs is 5.65 Å, Determine the number of Ga atoms and As atoms per cm³.
 - b) Determine the volume density of germanium atoms in a germanium semiconductor. The lattice constant of germanium is 5.65 Å. [8 MARKS]
- 4. Find the solution of Schrödinger equation for a particle in a 1-D square well of length L, Calculate the expectation value of p for a particle in the state n=1. [10MARKS]
- A Si crystal is to be grown by the Czochralski method, and it is desired that the ingot contain 10²⁰ phosphorous atoms/cm³.

 [8MARKS]
 - a) What concentration of P atoms should the melt contain to give this impurity concentration in the crystal during the initial growth? For P in Si, kd=0.4.
 - b) If the initial load of Si in the crucible is 5kg, how many grams of P should be added? The automatic weight of P is 31.

(Given density of silicon atom is 2.33 gm/cm³)

6. Starting from the raw silicon dioxide, explain the chemical process involved in the generating EGS

[6MARKS]

A

I Semester 2012-2013 II YEAR EEE/ECE/EIE QUIZ 2 (Closed Book)

Course No. ECE F214 / EEE F214 /INSTR F214

Course Title: Electronic Devices

Date: 12-12-2012

Max.Marks: 14

Weightage: 7%

Duration: 20 min

Important Notes: Answer all the questions

ID.	No:	Name:				
Sec	No.:					
Q.1	If a p-n junction is heavily doped, breakdown voltage will					
72	When a Zener diode is used in a circuit, it is always biased.					
Q.3	Say True or False					
	In a p-n junction Avalanche breakdown	occurs at low voltage				
Q.4	Say True or False		1M			
	A reverse biased p-n junction has a wid	e depletion layer				
Q.5	Avalanche breakdown results basically	due to	1M			
	A. impact ionisation,					
	B. strong electric field across the jur	action,				
	C. emission of electrons					
	D. rise in temperature					
Q.6	A general purpose diode is more likely to	suffer an avalanche breakdown rather than a	1M			
	zener breakdown because					
	A. It is heavily doped,					
	B. it is lightly doped,					
	C. it has weak covalent bond,					
	D. none of the above					
Q.7	What are the capacitance of the p-n junct	ion?	1M			
	•					

Q.8	Some n channel MOS devices have a channel already with zero gate voltage and						2IV	
			uired to turn	the devi	ce off, such a devic	e is called as	3	
		transistor.			·			
Q.9	Match	Match the following						3M
	A		Gate Depletion region Channel	A	$V_c = 0$			1
	В	$V_{GD} = -V_{D} \qquad {}^{G}$	$V_G = 0$	В	\[\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	С	Pinched-off channel	s	С	V _D			4
	Ans:		,					
Q.10								2M
	Following figure is an energy band diagram for the ideal MOS structure; we get this effect for formed on the surface of the semiconductor.							
	E_{Fm}	E_{c} E_{g} E_{γ} E_{γ}						

I Semester 2012-2013 II YEAR EEE/ECE/EIE QUIZ 1 (Closed Book)

Course No. ECE F214 / EEE F214 /INSTR F214

Date: 24-10-2012

Weightage: 8%

Course Title: Electronic Devices

Max.Marks: 16

Duration: 20 min

<u>Impo</u>	ortant Notes: Answer all the questions		
ID. No:		Name:	
Sec No.:			
Q.1	An electron can be	excited out of a bond and there by become	2M
No service of the ser	to participate in conduction.		
Q.2	In an intrinsic semiconductor rate of reco	ombination of electrons and holes is proportional to	2M
Q.3	Draw the energy band diagram for n type	e semiconductors showing all the energy levels	2M
· dayage			
Q.4	The expression for the effective mass of given by	an electron in a band with given E-k diagram is	2M
Q.5	The current is a function of electron velo- fast an electron moves in a semiconduct	city. Name the parameter which describes how or when an electric field is applied.	1M

- Q.6 6 Volts is applied across a 2 cm long semiconductor bar. The average drift velocity is 10⁴ 2M cm/ s. The electron mobility is
 - a) $4396 \text{ cm}^2/\text{V} \text{s}$
 - b) $3 \times 10^4 \text{ cm}^2 \text{/V} \text{s}$
 - c) $6 \times 10^4 \text{ cm}^2/\text{V} \text{s}$
 - d) $3333 \text{ cm}^2/\text{V} \text{s}$
- Q.7 The Fermi level is defined as

1M

- a) The level at which the probability of electron occupancy is $\frac{1}{2}$
- b) The level at which the probability of electron occupancy is 1
- c) The level at which the probability of electron occupancy is 1/4
- d) None of the above
- Q.8 A GaAs semiconductor is at T = 300K is doped with impurity concentration $N_d = 10^{16}$ cm⁻³. 2M The mobility μ_0 is 7500 cm²/V s. For an applied field of 10 V/cm the drift current density is
- Q.9 Find the resistance R of a Silicon bar which is doped with 10¹⁷/cm³ of phosphorus, with 2M width w=0.1mm, thickness t=10µm and length L=5mm. The mobility of electron in the silicon is given by 1350 cm²/V-s.

Ans R=