BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, DUBAI CAMPUS

I SEMESTER 2012-2013

COMPREHENSIVE EXAMINATION

Year	: II-MECHANICAL	Section: 1 and 2	Date: 31.12.2012
Course No	o. : ME F214	Course Title : APPLI	ED THERMODYNAMICS
Duration	: 3hrs	Marks: 80	Weightage : 40 %

Note: (i) Answer all the questions

- (ii) Draw neat sketches wherever necessary
- (iii) Make suitable assumptions if required and clearly state them
- (iv) Steam table will be provided
- (v) psychrometric is attached in the 4 page
- Q.1 An engine working on otto cycle has a volume of 0.5m³, pressure 1 bar and temperature 27°C at the commencement of compression stroke. At the end of the compression stroke the pressure is 10 bar. Heat added during the constant volume process is 200 kJ. Calculate the pressure, temperature and volumes at salient points in the cycle.

Also find (a) percentage clearance (b) heat rejected by cycle (c) air standard efficiency and (d) mean effective pressure in bar.

If the engine runs at 400 rev/min, so that there are 200 complete cycles per minute, calculate work done per minute developed by the engine. Take R for air = 0.287 kJ/kgk; $c_v = 0.718$ kJ / kg-K and $\gamma = 1.4$ [11 M]

Q.2 In a thermal power plant operating on an ideal Rankine cycle, superheated steam produced at **5 Mpa** and **500**°C is fed to a turbine where it expands to the condenser pressure of **10kPa**, Determine: (a) Pump work per kg of steam (b) Heat added to the boiler per kg of steam (c) Turbine work per kg of steam (d) Rankine efficiency (e) Specific steam consumption

If the net power output of the plant is to be 20 MW, Find out (f) Mass flow rate of steam in kg/s (g) mass flow rate of cooling water in the condenser. Assume the cooling water enters the condenser at 25° C and leaves at 35° C. Take specific heat of water $C_P = 4.186 \text{ kJ/kg-K}$

Q.3 A vapour compression refrigeration plant operates between evaporation and condensation temperatures of -10°C and 45°C respectively. The condensation temperature is further sub cooled, so that the liquid refrigerant enters the expansion valve at 35°C. The refrigerant is dry and saturated vapour at the entry to the compressor. It is discharged at 102°C from the compressor. The bore and stroke of the compressor are 80 mm each. It runs at 720 rpm with volumetric efficiency of 80 %.

Take specific heat of liquid refrigerant = 1.62 kJ/kg-k. Use the relation for enthalpy of sub-cooled by the refrigerant is $[h_f - c_p (T_{cond} - T_{sup cooled})]$.

Use the properties of refrigerant tabulated below:

Sat. temperature	V ₈	hy kJ/kg	<i>h_g</i> kJ/kg	S _f kJ/kg-K	S _g kJ/kg-K
-10°C	0.233	45.4	460.7	0.183	1.762
45°C	0.046	133.0	488.6	0.485	1.587

Determine (a)Specific heat of refrigerant vapor (b) Work done by the compressor in kJ/kg (c) Refrigerating effect in kJ/kg (d) COP of cycle (e) Theoretical swept volume in m³/min (f) Mass flow rate of refrigerant in kg/min (g) Capacity of the plant in TR [12 M]

- Q.4 The sling psychrometer in a laboratory test recorded the dry bulb temperature is 35°C, wet bulb temperature 25 °C. Calculate (a) Specific humidity (b) relative humidity (c) dew point temperature (d) enthalpy of mixture per kg of dry air. Take atmosphere pressure =1.0132 bar and partial pressure of vapour = 0.0252 bar [5 M]
- Q.5 A gas turbine until receives air at 1 bar and 300K and compresses it adiabatically to 6.2 bar. The compressor efficiency is 88 %. The fuel has a heating value of 44186 kJ/kg and the fuel- air ratio is 0.017 kg / kg of air. The turbine efficiency is 90 %. Find out (a) the maximum temperature in the cycle (b) actual work of turbine (c) actual work of compressor per kg of air compressed (d) thermal efficiency of the plant. Take:
 - (i) Specific heat of air $C_P = 1.005$ kJ /kg-K and $\gamma = 1.4$
- (ii) Specific heat for product of combustion gas C_{Pg} = 1.147 kJ /kg-K and γ = 1.3 [11 M] Page | 2

- Q.6 For a single stage single acting air compressor, actual volume of air taken in is 10m³/min, initial intake pressure 1.013 bar, initial temperature 27°C, Final pressure 900 kN/m². Clearance is 6 % of stroke volume. Stroke to bore ratio (L: D) =1.25 and compressor is running at 400 rpm, take n=1.3. Determine (a) volumetric efficiency (b) swept volume in m³/min (c) cylinder dimensions (d) Indicator Power of the compressor
- Q.7 The following results were obtained in a boiler trial:

Steam pressure and quality :8 bar and 0.95 dry

> Feed water :750 kg / hr at 25°C

> Coal consumption :100 kg/hr

Calorific value of coal :27300 kJ /kg

➤ Generation of ash collected from the furnace :8 kg /hr

Calorific value of ash :2815 kJ /kg

➤ Mass of flue gases :17 kg/kg of coal

> Flue gas temperature :325°C

> Ambient air temperature : 15°C

> specific heat of air (c_P) :1.0 kJ /kg-K

Calculate (a) Boiler efficiency (b) % age of heat loss to the flue gas (c) % age of heat loss to the ashes (d) % age of heat loss to unaccounted for. [11 M]

Q.8 [a] List out the advantages of combined cycle power generation?

[3 M]

[b] Briefly explain about integrated gasification power generation [IGCC] with neat sketch [5 M]

[PTO]

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, DUBAI CAMPUS

I SEMESTER 2012-2013

Test No.2 (Open Book)

Year	: II-MECHANICAL	Section: 1 and 2	Date: 18.11.2012
Course No	. : ME F214	Course Title : APPLII	ED THERMODYNAMICS
Duration	: 50Min	Marks: 40	Weightage : 20 %

Q.1 A food storage locker requires a refrigeration system of 2400 kJ/min capacity at an evaporator temperature of 263 K and a condenser temperature of 303 K. The refrigerant used is freon-12 and is sub-cooled by 6°C before entering the expansion valve and vapour is superheated by 7°C before leaving the evaporator coil as shown in Fig.1. The compression of refrigerant is reversible adiabatic. The refrigeration compressor is two-cylinder single-acting with stroke equal to 1.25 times the bore and operates at 1000 r.p.m. Assume the enthalpy of sub-cooled (h_{f4'}) by the refrigerant is 57.19 kJ/kg.

Take: Liquid specific heat = 1.235 kJ/kg K; Vapour specific heat = 0.733 kJ/kg K. Determine: (i) Refrigerating effect per kg.

- (ii) Mass of refrigerant to be circulated per minute.
- (iii) Theoretical piston displacement per minute.
- (iv) Theoretical power required to run the compressor, in kW.
- (v) Heat removed through condenser per min.
- (vi) Theoretical bore and stroke of compressor.

Properties of freon-12

Saturation Absortemp, K pressubar	Absolute	1,		py, kJ/kg	Entropy, kJ/kg K		
	•	volume of vapour, m³/kg	Liquid	Vapour	Liquid	Vapour	
2 63 3 03	2.19 7.45	0.0767 0.0235	26.9 64.6	183.2 199.6	0.1080 0.2399	0.7020 0.6854	

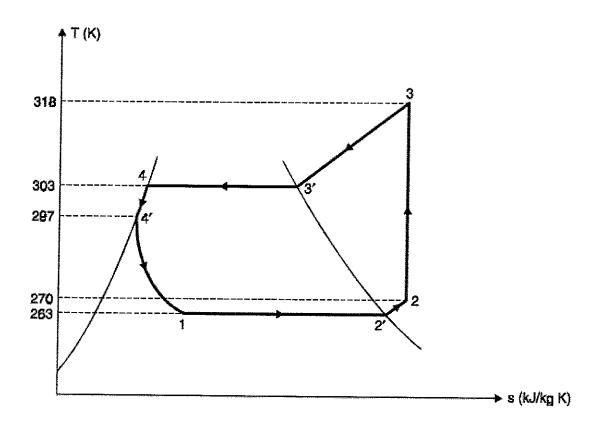


Fig.1

- Q.2. The air enters the compressor of an open cycle constant pressure gas turbine at a pressure of 1 bar and temperature of 20°C. The pressure of the air after compression is 4 bar. Maximum cycle temperature is 657 °C and the hot gas after expansion taking from turbine is rejected to atmosphere pressure. The isentropic efficiencies of compressor and turbine are 80 % and 85 % respectively. If flow rate of air is 3.0 kg/s, find:
 - (i) Temperature at the salient points of the cycle
 - (ii) Air-Fuel ratio
 - (iii) Power developed by the turbine and compressor per kg of air
 - (iv) Thermal efficiency of the cycle.

Assume $c_p = 1.0 \text{ kJ/kg k}$ and $\gamma = 1.4 \text{ for air and gases}$.

Calorific value of fuel = 41800 kJ/kg.

[20 M]

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI, DUBAI CAMPUS

I SEMESTER 2012-2013

Test No.1 (Closed Book)

Year	: II-MECHANICAL	Section: 1 and 2	Date: 30.09.2012
Course N	o. : ME F214	Course Title : APPLI	ED THERMODYNAMICS
Duration	: 50Min	Marks: 25	Weightage : 25 %

Notes: (i) answer all the questions (ii) Draw neat sketches wherever necessary

(iii) Make suitable assumptions if required and clearly state them (iv) Steam table will be provided

Q.1 List out at least 4 points comparing Otto cycle and Diesel cycle.

[4 M]

- Q.2 A four stroke engine working on Otto-cycle has a swept volume of 0.1 m³. The compression ratio is 7. The condition at the start of the cycle is pressure 1 bar and temperature 90 °C. The heat addition at constant volume is 100kJ/ cycle. Find ideal efficiency, mean effective pressure, temperature and pressure at key points in the cycle. Assume air as working substance with C_v = 0.718 kJ/kg-k, R for air = 0.287 kJ/kg-k and γ = 1.4
- Q.3 A diesel engine operating on the air-standard diesel cycle has six cylinders of 100mm bore and 120 mm stroke. The engine speed is 1800 rpm. At the beginning of compression the pressure and temperature of air are 1.03 bar and 35°C. If the clearance volume is 1/8 of the stroke volume, if the air is heated to 1500 °C

Calculate (i) pressure and temperature at the salient points of the cycle (ii) compression ratio (iii) efficiency of the cycle and (iv) mass of air drawn into the cylinder. Assume C_p and C_v of air to be **1.004** kJ/kg-k and **0.717** kJ/kg-k respectively. Take: R for air = **0.287** kJ/kg-k and γ = **1.4** [10.5 M]

BITS Pilani, Dubai Campus

Dubai International Academic City, Dubai, U.A.E.

Il Year I Semester 2012-2013 [Mechanical]

Quiz.2 (Closed Book)

Course No. ME C 211 Course Title: Applied Thermodynamics Weightage: 7 % Date: 12-12-2012 Max.Marks: 14 Duration: 20 min. STUDENT NAME:-----I.D No:-Q.No 1 2 4 3 5 6 7 8 9 10 11 12 13 Answer Q.1.In fire tube boiler [1 M] [A] The hot products of combustion passes through the tubes and water around it [B] Water passes through the tubes and hot products of combustion around it [C]Forced circulation occurs [D] None of the above Q.2 Fire tube boiler is [1 M] [A] Lancashire boiler [B] Cochran boiler [C] Locomotive boiler [D] All of the above Q.3. A Babcock-Wilcox boiler is classified as a water tube boiler, because [1 M] [A] It has a large bank of tubes and a steam drum [B] Water passes through tubes and hot gas around the tubes [C] Water evaporates in the drums [D] Super heater is mounted directly above the bank of tubes Q.4. For the same diameter and thickness of tube, fired tube boiler as compared to water tube boiler has [1 M] [A] More heating surface [B] less heating surfece [C] same heating surfece [D] None of the above Q.5. The output of a boiler is normally stated as [1 M] [A] Evaporation capacity in tonnes of steam that can be produced from and at 100° C [B] Weight of steam actually produced at rated pressure in tonnes hour [C] Boiler horse power

[D] Weight of steam produced per kg of fuel

Q.6.Equivalent eva	poration is defined	d as		[1 M]
[A] Ratio of he	at actually used in	producing steam to	the heat liberated in th	e furnance
[B] Amounted	of water evaporate	ed as dry saturated s	team in kg per kg of co	oal burnt
[C] Evaporation	on of water from a	nd at 100 ⁰ C into dry s	aturated steam	
[D] Evaporation	n of 15.653 kg of \	water per hour from a	nd at 100 ⁰ C.	
O 7 The water of har	-			
		raising steam to the	heat liberated in the b	
	n of fuel is called	TOLO (* f		[1 M]
[A] Equivalent		[B] Generation fac		
[C]Factor of e	vaporation	[D] Boiler efficiend	У	
Q.8.The steam in bo	oiler drum is alway	'S		[1 M]
[A] Wet	[B] Dry	[C] Superheater	[D] Wet and dry	
Q.9 In boiler, the fe	ed water supplied	l per hour is 205 kg v	vhile coal fired per hou	ur is 23 kg. Net
enthalpy rise per	kg of water is 1	15 kJ for conversion	to steam. If the calori	fic value of the
coal is 2050 kJ/k	g, then boiler effic	ciency will be		[1 M]
[A] 62 %	[B] 63 %	[C] 61 %	[D] 60%	
0.40 Di				
Q.10. Blow down is r	•			[1 M]
		pidly in case it accide	-	
			the boiler is in service	
		solids in the boiler is	controlled	
Of these statemer	nts			
[A] 1,2 and 3 a	are correct [B]	1 and 2 are correct		
[C] 3 alone is o	orrect [D]	1and 3 are correct		
Q.11. Which one of	the following sea	uences indicates the	correct oredr of flue g	ras flow in the
steam power plant lay		aomese maioales ans	obitot ordar of flue g	[1 M]
[A] economiser, a		rheater		f]
[B] air preheater, E				
[C] superheater, e	•			
[D] economiser, si	•			
		2		

Q.12	A boile	er p	producin	g 20	00 kg/	hr of s	team with	entha	alpy con	tent c	of 2426	kJ/k	g from	feed
	water	at	tempera	ature	40°C	(liquid	enthalpy	=168	kJ/kg).	Find	equival	ent	evapor	ation
	(kg/hr)												[1.5	; M]

Answer

Q13. In oil fuel with a calorific value of 44700 kJ is burnt in a boiler with air-fuel ratio as 20:1. Calculate the maximum temperature attained in the furnace of the boiler. Assume that whole of the heat of combustion is given to the products of combustion and hot gas specific heat is 1.08 KJ/kg-K. Take boiler room temperature as 38 °C.

[1.5 M]

<u>Answer</u>

BITS Pilani, Dubai Campus

Dubai International Academic City, Dubai, U.A.E II Year I Semester 2012-2013 [Mechanical]

Quiz.1 (Closed Book)

Cou	ırse No	o. ME (C 211	Cour	se Title: /	Applied	Thermod	dynami	cs Wei	ghtage:	8 %	
Date	e: 24-1	0-2012	2	:	Max.M	arks: 1	6		Dur	ation: 2	0 min.	
STU	DENT	NAMI	<u>:</u>		*		***	-I.D N	0:			
						·						
Q.No)	1	2	3	4	5	6	7	8	9	10	
Ansv	ver											
Q.1.	Rank	kine cy	cle com	prises	of							1 M]
	(a) T	wo ise	ntropic	process	ses and tw	vo cons	tant volu	me pro	cesses			
	(b) T	wo ise	ntropic	process	ses and tw	vo cons	tant pres	sure pi	ocesses	3		
	(c) T	wo isot	thermal	proces	ses and to	wo cons	stant pres	ssure p	rocesse	S		
	(d) N	one of	the abo	ove								
Q.2	In Ra	ankine	cycle th	ne work	output fro	m the t	urbine is	given l	оу			[1 M]
	(a) C	hange	of Inter	nal ene	ergy betwe	en inle	t and out	let				
	(b) C	hange	of enth	alpy be	tween inle	et and o	utlet					
	(c) C	hange	of entro	py betv	ween inlet	and ou	ıtlet					
	(d) C	hange	of temp	erature	e between	inlet ar	nd outlet					
Q.3	In Ra	ınkine (cycle ef	ficiency	of a good	d steam	power p	lant m	ay be in	the rang	e of [1 M]
	(a) 15	5 to 20	%	(b) 35	to 45 %	(c)	70 to 80	%	(d) 90	to 95 %)	
Q.4.	Critic	al temp	perature	of Ste	am is			_			['	1 M]
	(a) 31	13 ºC		(b) 347	⁷⁰ C	(c)	375°C		(d) 409	o _C		
Q.5.	Whic	h form	of the v	apour l	nas a beh	avior cl	ose to the	at of a	gas?		[1	1 M]
	.(a) w	et vap	our only	/	(b) dry ar	nd satur	ated vap	our	(c) we	t and dr	y vapou	r
	(d) su	iper he	eated va	apour								
Q.6.	The h	eat ob	served	by wate	er at its sa	turation	n tempera	ature to	get cor	verted in	n to dry	steam
at the	same	tempe	rature i	s called							[1	I M]
	(a) se	ensible	heat		(b) specifi	ic heat		(c) late	ent heat	(d)	total he	at

Q./. A	\ wet vapour can be	completely s	pecified by its			[1 M]
	(a) pressure	(b) temperat	ure	(c) pressure	e and dryness fractio	n
	(d) pressure and te	emperature				
Q.8. w	which of the following	g parameter c	lecreases at t	he pressure o	f steam is raised.	[1 M]
	(a) saturation temp	erature	(b)specific v	olume	(c) sensible heat	
	(d) latent heat of va	aporization				
Q.9. Ir	n Rankine cycle the	work output f	rom the turbin	e is given by_		[1 M]
	[a] Change in inter	nal energy be	tween inlet ar	nd outlet		
	[b] Change of entro	opy between i	nlet and outle	t		
	[c] Change of temp	erature betwe	een inlet and	outlet		
	[d] Change in enth	alpy between	inlet and outle	et		
Q.10.	. In steam power pla	ant power out	out from the tu	ırbine is 1665	kW and pump work	is
	15 kW. Heat input	to the plant is	3000 kW. Fir	nd the efficien	cy of the power plan	t. [1 M]
	[a] 55 %	[b] 56 %	[c] 54 %	[d] 53 %		
			·		It then enters a con-	
			-	-	eeds back the water	
		al processes;	find pump wo	rk per kg of st	eam. Take specific v	/olume =
	0.00108 m ³ /kg					[1.5 M]

<u>Answer</u>

Q.12. In a steam power cycle, the steam supply is at 15 bar and dry and saturated.

The condenser pressure is 0.4 bar. Calculate the Carnot efficiency of the cycle.

Assume the following values.

[1.5 M]

At 15 bar:

 $t_s = 198.3$ °C

At 0.4 bar: $t_s = 75.9$ °C

Answer

Q.13. The condensate exit from the condenser contains 10 kg of water at 90°C and it is stored in the hot well tank. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank and (b) the volume of the tank. [3 M]

Temp(°C)	Pressure (Bar)	Sp.vol m³/kg		Sp.enthalpy kJ/kg			Sp.entropy kJ/kg		
t	р	Vf	Vg	h _f	h _{fg}	hg	Sf	S _{fg}	Sg
90	0.70109	0.001036	2.3613	376.9	2283.2	2660.1	1.193	6.287	7.480

<u>Answer</u>