BITS, PILANI - DUBAI Dubai International Academic City, DUBAI II-Year, Semester- I (2009-10) MATHEMATICS- III (MATH C241) COMPREHENSIVE EXAMINATION

Time: 3 Hrs

Max.Marks:120

Date: 23-12-2009.

Weightage:40%

Note: This Paper contains THREE SECTIONS (A, B and C).

Answer each section in Separate Answer Book. All questions are compulsory

and should be answered sequentially.

Section - A

- 1 a) Reducing the order of the differential equation solve the equation xy'' + y' = 4x.
 - b) Solve the differential equation $(x \log x)y' + y = 3x^3$

(8 + 6)

- Find the solution of the initial value problem y'' 6y' + 5y = 0, y(0) = 3 and y'(0) = 11.
 - b) Using the method of variation of parameters, find a particular solution of $y'' + y = \sec x \tan x$. (6 + 8)
- Using method of undetermined coefficients find the general solution of $y'' + 3y' 10y = 6e^{4x}$.
 - b) Using operator method, find a particular solution of $y''' 2y'' + 10y = x^4 + 2x + 5$. (6 + 6)

Section – B

- Find two independent power series solutions of the Chebyshev's equation $(1-x^2)y'' xy' + p^2y = 0 \text{ near } x=0.$
 - b) Find the general solution of the differential equation, $(2x^2 + 2x)y'' + (1+5x)y' + y = 0$, near the singular point x=0, in the Hyper geometric form. (7+8)
- 2 a) If $P_n(x)$ is a Legendre polynomial show that $\int_{-1}^{1} P_n^2(x) dx = \frac{2}{2n+1}$.

b) If
$$J_p(x)$$
 is Bessel function of the first kind of order p , show that
$$\frac{d}{dx}(x^p J_p(x)) = x^p J_{p-1}(x) \text{ and } \frac{d}{dx}(x^{-p} J_p(x)) = -x^{-p} J_{p+1}(x). \tag{7+8}$$

3 a) Find the general solution of the system of first order equations

$$\frac{dx}{dt} = -3x + 4y$$

$$\frac{dy}{dt} = -2x + 3y$$

b) Find the eigenvalues λ_n and eigenfunctions $y_n(x)$ for the boundary value problem $y'' + \lambda y = 0$, y(a) = 0, y(b) = 0 when a < b. (5 + 5)

Section - C

- 1 a) Find the Laplace Transform of $\{x^{1/2}\}$, using $L(x^{-1/2})$. (5)
 - b) Using convolution theorem for Laplace Transform solve $y'' + 5y' + 6y = 5e^{3t}$, y(0) = 0; y'(0) = 0. (10)
- 2 a) Find the Fourier Series of the periodic function defined by

$$f(x) = 0; \quad -\pi \le x < 0$$
$$x^2; \quad 0 \le x < \pi$$

and deduce the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$. (10)

- b) Find the Cosine Series for the function $f(x) = \pi x$; $0 \le x \le \pi$. (5)
- Solve the vibrating string problem $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, if the initial shape of the string is given by the function $f(x) = 2cx/\pi$; $0 \le x \le \pi/2$, $2c(\pi x)/\pi$, $\pi/2 \le x \le \pi$ (10)

BITS PILANI, DUBAI CAMPUS Dubai International Academic City, DUBAI II-Year, Semester- I (2009-10)

MATHEMATICS- III (MATH C241) Test -II (OPEN BOOK)

Time: 50 Minutes

Max.Marks:60

Date: 22-11-2009.

Weightage:20%

Note: Answer the questions in serial order.

Only the prescribed text book and hand written notes are allowed.

- 1 a) Verify that the origin is a regular singular point of 4xy'' + 2y' + y = 0 and find only one Frobenius Series solution of it.
 - b) If F(a,b,c,x) is Hypergeometric function, then prove that $\log \frac{(1+x)}{(1-x)} = 2xF(\frac{1}{2},1,\frac{3}{2},x^2).$
 - c) Find the general solution of the differential equation $(x^2 1)y'' + 2xy' 6y = 0$, about x=1, by changing it into *Hypergeometric* equation. (10+5+5)
- 2 a) If $P_4(x)$, $P_2(x)$ and $P_0(x)$ are Legendre Polynomials, show that $x^4 = \frac{8}{35}P_4(x) + \frac{4}{7}P_2(x) + \frac{1}{5}P_0(x)$. By using the orthogonal properties of Legendre Polynomials find $\int_{-1}^{1} x^4 P_2(x) dx$.
- b) If $T_n(x)$ is the Chebyshev polynomial, show that

$$T_{m+n}(x) + T_{m-n}(x) = 2T_m(x)T_n(x)$$
 and $2(T_n(x))^2 = 1 + T_{2n}(x)$ (10+10)

3 a) Express the Bessel function $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$.

b) Find the eigenvalues and eigenfunctions of the Boundary Value Problem

$$y'' + \lambda y = 0$$
, $y'(0) = 0$ and $y'(L) = 0$, $L > 0$. (10+10)

BITS PILANI, DUBAI CAMPUS Dubai International Academic City, DUBAI II-Year, Semester- I (2009-10) MATHEMATICS- III (MATH C241) Test –I (CLOSED BOOK)

Time: 50 Minutes Date: 4-10-2009.

Max.Marks:75 Weightage:25%

- 1 a) Solve the differential equation $x^2 \frac{dy}{dx} = 3(x^2 + y^2) \tan^{-1}(\frac{y}{x}) + xy$.
 - b) Solve the differential equation $(xy-1)dx + (x^2 xy)dy = 0$ by finding an integrating factor.
 - c) Find a solution of the differential equation $(1+x^2)dy + 2xydx = (\cot x)dx$. (9+8+8)
- 2 a) Find the general solution of the differential equation $xy'' = y' + (y')^3$, by reducing the order of the equation.
 - b) If $y_1 = x$, is one solution of $x^2y'' + 2xy' 2y = 0$, then find its general solution.
 - c) Find the general solution of the differential equation 4y'' 8y' + 7y = 0. (9+8+8)
- 3 a) Find the general solution of $x^2y'' + 2xy' 16y = 0$
 - b) Solve the initial value problem y'' + 4y' + 5y = 0, y(0) = 1, y'(0) = 0
 - c) Find the general solution of $y^{(4)} + 2y''' + 2y'' + 2y' + y = 0$ (8+8+9)

BITS PILANI, DUBAI CAMPUS Dubai International Academic City, DUBAI II-Year, Semester- I (2009-10) MATHEMATICS- III (MATH C241) Quiz –II (CLOSED BOOK)

Time: 20 Minutes

Max.Marks:21

Date: 8-12-2009. Weightage: 7%

Note: Write The Market Consult

NAME: ID. No:

1. Find the Laplace Transform of $f(x) = \cos^2 x + x$.

(3)

2. Find the *Inverse Laplace Transform* of $F(p) = \frac{1}{p(p-1)}$ (3)

3. Find the Inverse Laplace Transform of $F(p) = \frac{16}{(p+4)^3}$. (3)

- Find the Laplace Transform of $f(x) = x \sin 4x$. (3)
- 5. Find the convolution of f(t) = t and $g(t) = e^{at}$. (5)
- Find A(t) in solving the differential equation y'' y' 6y = -t, y(0) = y'(0) = 0.

 (4)

2585 K

BITS PILANI, DUBAI CAMPUS Dubai International Academic City, DUBAI II-Year, Semester- I (2009-10) MATHEMATICS- III (MATH C241) Quiz – II (CLOSED BOOK)

Time: 20 Minutes Date: 8-12-2009.

Max.Marks:21 Weightage:7%

Note:

NAME:

ID. No:

1. Find the Laplace Transform of $f(x) = \sin^2 x + e^{3x}$.

3 40 1 244 V 3 1 1 2 "

(3)

2. Find the *Inverse Laplace Transform* of $F(p) = \frac{1}{(p-2)(p-1)}$ (3)

3. Find the Inverse Laplace Transform of $F(p) = \frac{5}{(p+2)^3}$. (3)

4. Find the Laplace Transform of $f(x) = x \cos 3x$. (3)

5. Find the convolution of f(t) = -t and $g(t) = e^{-at}$. (5)

Find A(t) in solving the differential equation y'' + y' - 6y = t, y(0) = y'(0) = 0.

(4)

BITS PILANI, DUBAI CAMPUS Dubai International Academic City, DUBAI II-Year, Semester- I (2009-10) MATHEMATICS- III (MATH C241) Quiz –I (CLOSED BOOK)

Time: 20 Minutes Date: 13-10-2009.

Max.Marks:24

Weightage:8%

Each Question carries FOUR marks.

- 1. Find Wronskian $W(e^{3x}\cos 6x, e^{3x}\sin 6x)$.
- 2. If y'' + 4y = Tan2x, find v_1 of $v_1y_1 + v_2y_2$ where y_1 and y_2 are general solutions of homogeneous part.
- Find the singular points of $x^2(x^2-1)y''+2x(x-1)y'-16y=0$ and classify them.
- Find the recurrence relation for the coefficients in the series solution of 4xy' + 5y = 0
- 5. Find a particular solution of the differential equation $(D+2)^3 y = \frac{Sin(-6x)}{e^{2x}}$
- Find a particular solution of the differential equation $y^{(5)} + y = x^5$.

BITS PILANI, DUBAI CAMPUS Dubai International Academic City, DUBAI II-Year, Semester- I (2009-10) MATHEMATICS- III (MATH C241) Quiz – I (CLOSED BOOK)

Time: 20 Minutes Date: 13-10-2009.

Max.Marks:24

Weightage:8%

Each Question carries FOUR marks.

- 1. Find the Wronskian $W(e^{2x}\cos 4x, e^{2x}\sin 4x)$).
- 2. For y'' + 9y = Sec3xTan3x find v_1 of $y = v_1y_1 + v_2y_2$.
- Find the singular points of (3x+1)xy'' + 3(x+1)y' 4 = 0 and classify them.
- Find the indicial equation and its roots for the following differential equation $x^2y'' 4xy' = 0$.
- Find a particular solution of the differential equation. $(D-1)^3 y = \frac{\cos(5x)}{e^{-x}}$
- Find a particular solution of the differential equation $y''' \frac{y'}{4} = x$.