BITS PILANI, DUBAI CAMPUS INTERNATIONAL ACADEMIC CITY, DUBAI

FIRST YEAR - SEMESTER-II (2011-12)

MATHEMATICS-II (MATH F112/MATH C192)

COMPREHENSIVE EXAMINATION (CLOSED BOOK)

Date: 05.06.2012 Time: 3 hours Max. Marks: 120

Weightage: 40 %

Answer Part A, Part B and Part C in separate Answer Books.

Answer all the questions.

PART A

1. Solve the system of linear equations by Gauss Jordan Method:

$$x_1 + 2x_2 - x_3 + 3x_4 = 0$$
, $2x_1 + 2x_2 - x_3 + 2x_4 = 0$, $x_1 + 3x_3 + 3x_4 = 0$ [10]

- 2. Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by L(a,b) = (a-2b,2a+b,a+b) and let $S = \{(1,-1),(0,1)\}$ and $T = \{(1,1,0),(0,1,1),(1,-1,1)\}$ be the bases for \mathbb{R}^2 and \mathbb{R}^3 respectively. Find the matrix representing L with respect to S & T.
- 3. Determine whether $S = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \right\}$ forms a basis for M_{22} . If not, find a basis and dimension of the subspace spanned by S. [10]
- 4. Determine whether the linear transformation $L\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ is invertible. If

so, find L^{-1} . [10]

PART B

5. Find the eigenvalues and eigenvectors of the following matrix:

[12]

$$A = \begin{pmatrix} 3 & 1 & 1 \\ -4 & -2 & -5 \\ 2 & 2 & 5 \end{pmatrix}$$

6. Find the fourth roots of (-8).

[8]

- 7. Check whether $u(x, y) = e^{2x}(x\cos 2y y\sin 2y)$ is harmonic and hence find its harmonic conjugate. [10]
- 8. (a) Find $\log (-1-i\sqrt{3})$ and its principal value.

[4]

(b) Find all the values of $(1-i)^{-i}$.

[6]

PART C

- 9. Find the upper bound of (without evaluating the integral) $\left| \int_C \frac{(z^6+6)Logz}{z^2-1} \, dz \right| \text{ where }$ $C = \left\{ z : z = 2e^{i\theta}, \ 0 \le \theta \le \frac{\pi}{2} \right\}.$ [10]
- 10. Find the value of the integral $\int_C \frac{e^{3iz}}{(z-\pi)^2(z-7)} dz$ where C is taken counter clockwise around the circle $|z-\pi|=3.14$.
- 11. Find the Laurent's series expansions for $f(z) = \frac{7z-2}{z^3-z^2-2z}$ valid in the regions a) 0 < |z+1| < 1 (b) |z+1| > 3.
- 12. Use the calculus of residues to evaluate $\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2 + 9)(x^2 + 16)} dx$. [12]

All the Best

BITS Pilani, Dubai Campus Dubai International Academic City, Dubai First year – Second Semester 2011 – 2012

Mathematics II (MATH F112/MATH C192)

Test - 2 (Open Book)

Date: 22.04.2012 Time: 50 Minutes

Max. Marks: 60 Weightage: 20%

Answer ALL the Questions

1. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ defined by L[(x, y, z)] = (x + y + z, 2x - y + 3z, z - 3y). Find the kernel L, range L and verify the dimension theorem. (10)

2. If $L: \mathbb{R}^3 \to M_{22}$ defined by $L[(a,b,c)] = \begin{pmatrix} 2a+b & 3b-c \\ a+c & a+b+c \end{pmatrix}$, check whether L is 1-1 and onto. Justify your answer. (10)

3. Find the matrix of the linear transformation $L(ax^3 + bx^2 + cx + d) = (a+b)x^2 + (b+c)x + (c+d)$ with respect to $S = \{x^3, x^2 + x^3, x + x^2, 1 + x\}$ and $T = \{x^2 + 4x + 3, 2x^2 + x - 5, 2\}$ (11)

4. Check whether $L: P_2 \to R^3$ defined by $L(ax^2 + bx + c) = (a - c, 2b, a + c)$ is invertible. If so find L^{-1} .

5. Find the cube roots of $\frac{1}{\sqrt{3}-i}$ (10)

6. Find the upper bound of $\left| \frac{z-3}{2z^2-z-3} \right|$ if z lies on the circle |z|=2. (8)

Good luck!

BITS Pilani, Dubai Campus Dubai International Academic City, Dubai First year – Second Semester 2011 – 2012

Mathematics II (MATH F112/MATH C 192)

Test - 1 (Closed Book)

Date: 08.03.2012 Time: 50 Minutes

Max. Marks: 75 Weightage: 25%

Answer ALL the Questions

1. Solve the following system of linear equations by using Gauss Elimination method. (10)

$$x + 2y - 3z = 4$$

$$x + 3y + z = 11$$

$$2x + 5y - 4z = 13$$

$$2x + 6y + 2z = 22$$

2. Find all values of k for which the given system has (a) no solution (b) infinitely many solutions. (10)

$$2x + 2y + 3z = 2$$

$$3x - y + 5z = 2$$

$$x - 3y + 2z = k - 2$$

3. Find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ using Gauss Jordan Method. (11)

4. (a) Let V be the set of all ordered pairs (a,b) defined by $(a,b) \oplus (c,d) = (ac,bd)$ and $k \otimes (a,b) = (ka,kb)$. Is V a vector space? (7)

(b) Let $S = \{(a,b,c) \in \mathbb{R}^3 \mid a = 2b = 3c \}$. Is S a subspace of \mathbb{R}^3 under the usual operations of vector addition and scalar multiplication. Justify your answer. (7)

5. Let $S = \{(1,3,-1), (2,7,-3), (4,8,-7)\}$. Determine whether v = (1,4,2) belongs to Span S? If so, express v as a linear combination of vectors of S.

6. Check whether the set $S = \{x^2 + 2x - 1, 2x^2 + x + 4, 5x + 3\}$ spans P_2 . (10)

7. Find the eigenvalues and eigenvectors for the matrix (10)

$$\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
2 & 1 & 2
\end{pmatrix}$$

Good luck!

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATION ACADEMIC CITY, DUBAI FIRST YEAR SECOND SEMESTER 2011- 2012 Quiz 2

Course Code: MATH F112/MATHC192

Course Title: MATHEMATICS II

Duration: 20 minutes

Date:16.5.2012 Max Marks: 21 Weightage:7%

2. Show that $u(x, y) = \sin x \cosh y$ is harmonic and then find its harmonic conjugate. (6)

3. Find all the values of $\log \left(\frac{e + ie\sqrt{3}}{4} \right)$.

(4)

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATION ACADEMIC CITY, DUBAI FIRST YEAR SECOND SEMESTER 2011- 2012 Quiz 2

Course Code: MATH F112/MATHC192

Course Title: MATHEMATICS II

Duration: 20 minutes

Date:16.5.2012 Max Marks: 21 Weightage:7%

Answer the following questions:

1. Check whether $f(z) = \sqrt[4]{r} e^{i\theta/4}$ is analytic. If so find f'(z) (6)

2. Show that $u(x, y) = \cos x \cosh y$ is harmonic and then find its harmonic conjugate. (6)

3. Find all the values of $\log \left(\frac{e - ie\sqrt{3}}{4} \right)$.

(4)