BITS, PILANI-DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

FIRST YEAR - SEMESTER-II (2010-11)

MATHEMATICS-II (MATH C192)

COMPREHENSIVE EXAMINATION (CLOSED BOOK)

Date: 06.06.2011 Time: 3 hours Max. Marks: 120 Weightage: 40 %

Answer Part A, Part B and Part C in separate Answer Books.

Answer all the questions.

PART A

1. Solve the system of linear equations using Gauss Jordan Method.

$$x + 2y + z = 3$$
, $2x + 5y - z = -4$, $3x - 2y - z = 5$ [10]

- 2. (i) Determine whether the vectors $\{(1, 1, 2), (2, 3, 1), (4, 5, 5)\}$ in \mathbb{R}^3 are linearly independent? Justify your answer. [5]
 - (ii) Consider the subspace $W = \{(a, b, c, d) : a = d, b = 2c\}$ of R^4 . Find a basis and dimension of W. [5]
- 3. Determine whether $S = \{t^3 + t^2 2t + 1, t^2 + 1, t^3 2t, 2t^3 + 3t^2 4t + 3\}$ forms a basis for P_3 . If not, find the basis and dimension of the subspace they span. [10]
- 4. Let $L: \mathbb{R}^4 \to \mathbb{R}^3$ be defined by L(x, y, z, t) = (x y + z + t, x + 2z t, x + y + 3z 3t). Find bases for Ker L and Range L. Also verify the rank-nullity theorem. [10]

PART B

1. Find the eigenvalues and eigenvectors of the following matrix.

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{pmatrix}$$
 [9]

2. a) Find all the roots of the equation
$$z^4 + 16 = 0$$
 [5]

b) Find all the values of
$$\log(-1+i\sqrt{3})$$
 [4]

[PTO]

- 3. Show that the function $f(z) = z \sin z$ is an entire function. Also find f'(z). [10]
- 4. Find an analytic function whose real part is $u(x, y) = e^x \cos y$. [6]
- 5. If C is the upper half of the circle |z|=R, then find an upper bound for the integral in terms of R:

$$\left| \int_{C} \frac{(2z^2 - 1) dz}{z^4 + 5z^2 + 4} \right|$$
[6]

PART C

- 1. Evaluate $\int_C f(z)dz$ where $f(z) = \pi \exp(\pi \overline{z})$ and C is the boundary of the square with vertices 0, 1, (1+i), i and the orientation is in the positive direction. [10]
- 2. Find the value of the integral $\int_{C} \frac{\cosh(\pi z)dz}{z(z^2+1)}$ where C is the circle |z|=2. [10]
- 3. Find the Laurent's series expansions for $\frac{z}{(z-1)(z-3)}$ in the region 0 < |z-1| < 2. [10]
- 4. Find the value of the improper integral $\int_{0}^{\infty} \frac{\cos x dx}{(x^2 + 9)(x^2 + 4)}$ [10]

All the Best

BITS Pilani, Dubai Campus Dubai International Academic City, Dubai First year – Second Semester 2010 – 2011

Mathematics II (MATH C 192)

Test - 2 (Open Book)

Date: 24.04.2011 Time: 50 Minutes Max. Marks: 60 Weightage: 20%

Answer ALL the Questions

1. Find the eigenvalues and the corresponding eigenvectors for the following matrix:

$$A = \begin{pmatrix} 4 & 0 & 1 \\ -1 & -6 & -2 \\ 5 & 0 & 0 \end{pmatrix} \tag{9M}$$

- 2. Consider the linear transformation defined by L(x, y, z) = (2x, 4x y, 2x + 3y z). Show that L is invertible and find L^{-1} . Also find the matrix representing L^{-1} with respect to the natural basis of R^3 . (9M)
- 3. Verify the rank-nullity theorem for the linear transformation $L: P_2 \to P_2$ defined by $L(at^2+bt+c)=(a+2c)t^2+(b-c)t+(a-c)$, finding bases for the range and null space. (9M)
- 4. Find the fourth root of $\left(\frac{i}{-\sqrt{3}-i}\right)$ (8M)
- 5. Show by two path method that f'(0) does not exist for

$$f(z) = \frac{z^5}{|z|^4} \qquad \text{when } z \neq 0$$

$$= 0 \qquad \text{when } z = 0 \tag{9M}$$

- 6. Find p such that $f(z) = r^3(\cos 3\theta + i \sin p\theta)$ is differentiable everywhere and also find f'(z)? (8M)
- 7. Show that $f(z) = z^{2}e^{z}$ is analytic everywhere and hence find its derivative. (8M)

ALL THE BEST!

BITS Pilani, Dubai Campus Dubai International Academic City, Dubai First year – Second Semester 2010 – 2011

Mathematics II (MATH C 192)

Test - 1 (Closed Book)

Date: 06.03.2011 Time: 50 Minutes

Max. Marks: 75 Weightage: 25%

Answer ALL the Questions

1. Solve the following system of linear equations by using Gauss elimination method. (9)

$$2x-3y+z=-1$$
$$3x+z=6$$
$$x+2y-2z=-1$$

2. Find all the values of a for which the resulting system has (a) no solution, (b) a unique solution, and (c) infinitely many solutions. (9)

$$x+y-z=3$$

$$x-y+3z=4$$

$$x+y+(a^2-10)z=a$$

- 3. Find the inverse of the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$ using Gauss Jordan Method. (10)
- 4. (a) Is the set of all real numbers with the operations $u \oplus v = uv$, $c \otimes v = cu$ a vector space? Justify your answer. (5)
 - (b) Consider the set W of all vectors in \mathbb{R}^3 of the form (a,b,c) where c=a+2b or b-3c=0. Is W a subspace of \mathbb{R}^3 ? Justify your answer. (5)
- 5. Let $S = \{t-1, t+1, t^2+t+1\}$. Determine whether $v = t^2 + 2t + 4$ belongs to $Span\ S$? If so express v as a linear combination of vectors of S. (9)
- 6. Check whether the set $S = \{t^2 e^t, t \sin t, \cos t\}$ is linearly independent. Justify your answer. (9)
- 7. Check whether the set $S = \{(2, 2, 3), (-1, -2, 1), (0, 1, 0)\}$ spans R^3 . (9)
- 8. Suppose the vectors u, v, w are linearly independent. Prove that the vectors u+v, u-v, u-2v+w are also linearly independent. (10)

Good luck!

B

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATION ACADEMIC CITY, DUBAI FIRST YEAR SECOND SEMESTER 2010- 2011

Quiz 2

Course Code: MATH C192 Course Title: MATHEMATICS II

Duration: 20 minutes

Date: 09.05.2011 Max Marks: 21 Weightage: 7%

(5)

1. Find a harmonic conjugate of
$$u(x, y) = e^x \cos y$$

2. Find all the solutions of the equation
$$e^z = 1 - i\sqrt{3}$$
 (5)

3. Find the principal value of
$$(1+i)^{3+i}$$

(5)

(6)

4. Evaluate
$$\int_{C}^{|z|^2} dz$$
 where C is the line segment from 1 to i

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATION ACADEMIC CITY, DUBAI FIRST YEAR SECOND SEMESTER 2010- 2011

Quiz 2

Course Code: MATH C192 Course Title: MATHEMATICS II

Duration: 20 minutes

Date: 09.05.2011 Max Marks: 21 Weightage: 7%

1.	Name:	ID No:	Sec:
	Answer the follow		000
	1. Find a harmonic conjugate of $u(x, y)$	$=e^{-x}\cos y$	(5)

2. Find all the solutions of the equation
$$e^z = 1 + i\sqrt{3}$$
 (5)

3. Find the principal value of
$$(1+i)^{3-i}$$

(5)

4. Evaluate
$$\int_{C} |z|^2 dz$$
 where C is the line segment from -1 to i (6)

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATION ACADEMIC CITY, DUBAI FIRST YEAR SECOND SEMESTER 2010- 2011

Quiz 1

Course Code: MATH C192 Course Title: MATHEMATICS II

Duration: 20 minutes

Date:28.3.2011 Max Marks: 24 Weightage: 8%

N	ame: ID No: S	ec:
	Answer the following questions:	
1.	Consider the subspace $W = \{(a, b, c, d) \mid a = 2c, b = d\}$ of \mathbb{R}^4 . Find a basis and	
	dimension of W.	(5)

2. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by L(x, y, z) = (|x|, y + z). Check whether L is a linear transformation. (5)

3. Let $L: P_1 \to P_3$ be defined by $L(p(t)) = t^2(p(t))$. Let $S = \{t+1, t-1\}$ and $T = \{t^3, t^2 - 1, t, t+1\}$ be bases of P_1 and P_3 respectively. Find the matrix of L with respect to S and T. (5)

4. Let $L: R^3 \to R^4$ be defined by $L \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-b \\ a+b \\ b+c \\ b-a \end{pmatrix}$. Find the basis and dimension for Kernel (L).

- 5. Let $L: V \to R^5$ be a linear transformation. (4) (a) If L is one to one and dim (Range L) = 3, what is the dim (V)?
 - (b) If L is onto, what can you say about dim (V)?

BITS PILANI, DUBAI CAMPUS DUBAI INTERNATION ACADEMIC CITY, DUBAI FIRST YEAR SECOND SEMESTER 2010- 2011

Quiz 1

Course Code: MATH C192 Course Title: MATHEMATICS II Duration: 20 minutes

Date:28.3.2011 Max Marks: 24 Weightage: 8%

Name:	ID No:	Sec:		
Answer the following questions:				

1. Consider the subspace $W = \{(a,b,c,d)/a = d,b = 2c\}$ of R^4 . Find a basis and dimension of W. (5)

2. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by L(x, y, z) = (x + y, |z|). Check whether L is a linear transformation. (5)

3. Let
$$L: P_1 \to P_3$$
 be defined by $L(p(t)) = t^2(p(t))$. Let $S = \{t+1, t\}$ and $T = \{t^3, t^2-1, t, t+1\}$ be bases of P_1 and P_3 respectively. Find the matrix of L with respect to S and T. (5)

4. Let
$$L: R^3 \to R^4$$
 be defined by $L \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-b \\ a+b \\ b+c \\ b-a \end{pmatrix}$. Find the basis and dimension for Range (L).

5. Let
$$L:V\to R^5$$
 be a linear transformation. (4) (a) If dim (V) = 3 and dim (Ker L) = 1, what is the dim (Range L)?

(b) If L is one to one, what can you say about dim (V)?