BITS, PILANI-DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

FIRST YEAR - SEMESTER-II (2008-09)

MATHEMATICS-II (MATH C192)

COMPREHENSIVE EXAMINATION (CLOSED BOOK)

Date: 01.06.2009 Time: 3 hours

Max. Marks: 120

Weightage: 40 %

Answer all the questions.

Answer Part A, Part B, Part C and Part D in separate Answer Books.

PART A

1 a) Check for the consistency of the following system of linear equations and solve it.

$$x_{1} + 2x_{2} - 3x_{4} = 2$$

$$x_{1} + 2x_{2} + x_{3} + 3x_{4} = 3$$

$$2x_{1} + 4x_{2} - 6x_{4} = 4$$

$$3x_{1} + 5x_{2} + x_{3} - 4x_{4} = 4$$
[8]

b) Let R^2 be the set of all ordered pairs of positive real numbers in which the addition of vectors ' \oplus ' and scalar multiplication '*' are defined as

 $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and c * (x, y) = (3cx, y), c > 0. Check whether the closure and associative properties are true in R^2 . Is $(R^2, \oplus, *)$ a vector space? Justify.

[7]

- 2 a) Let $S = \{t^3 + t^2 2t + 1, t^2 + 1, t^3 2t, 2t^3 + 3t^2 4t + 3\}$ be a subset of P_3 . Find a basis from S for the subspace W = Span S and also find dim(W). [8]
- b) Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by L(x, y, z) = (x + 2y + z, 2x y, 2y + z). Let S be the natural basis for \mathbb{R}^3 and $T = \{(1,0,1), (0,1,1), (0,0,1)\}$ be any other basis for \mathbb{R}^3 . Find the matrix of L with respect to (i) S & T (ii) T & S

PART B

- 3. a) Prove that the function $u(x, y) = x^3 3xy^2$ is harmonic and find its harmonic conjugate v(x, y).
 - b) Test whether the complex function $f(z) = e^{-y} \sin x ie^{-y} \cos x$ is entire. [7]
- 4. a) Find the principal value of $(1-i)^{4i}$. [5]

b) If C is the upper half of the circle |z| = 4, then without integrating find an upper bound for

$$\left| \int_C \frac{(z+1)dz}{(z^3-2)} \right|$$
 [10]

PART C

5 a) Find the characteristic equation and eigenvalues of the following matrix. Also find the eigenvector corresponding to any one eigenvalue.

$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$
 [10]

b) Evaluate
$$\int_C \frac{dz}{(z^2 + 2z + 2)}$$
 where C is given by $|z| = 1$. [5]

6 a) Apply Cauchy's integral formula to evaluate $\int_C \frac{\cos(z) dz}{z(z^2 + 8)}$ where C denote the positively oriented boundary of the square whose sides lie along the lines $x = \pm 2$, $y = \pm 2$. [8]

(b) Expand
$$f(z) = \frac{z}{(z+1)(z-3)}$$
 as a Laurent's series valid in the region $1 < |z| < 3$.

PART D

7. Let C be the circle |z-3|=2, described in the positive sense. Evaluate the following integral:

$$\int_{C} \frac{(z^2 + 2) dz}{z^2 - 5z + 6}$$
 [10]

8. Find the residues for the following functions:

(a)
$$\frac{e^z}{(z^2+4)^2}$$
 at the pole in the upper plane (b) $ze^{\left(\frac{1}{z-2}\right)}$ Also indicate the nature of the poles. [5+5]

9. Evaluate
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)(x^2 + 16)}$$
 [10]

All the Best

BITS-PILANI, DUBAI International Academic City, Dubai First Year-Semester-II (2008-09)

MATHEMATICS-II (MATH C192) Test-II (Open Book)

Time: 50 minutes Max. Marks: 60

Weightage: 20%

26.04.2009

Note 1. Only the prescribed text books and handwritten class notes are allowed 2. Answer all the questions sequentially.

- 1. Find the square roots of $-1-i\sqrt{3}$ and represent them geometrically.
- 2. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $L(x, y, z) = (x y + z, 2x + 3y \frac{z}{2}, x + y 2z)$ Let S be the natural basis and $T = \{ (1, 1, 0), (1, 2, 3), (-1, 0, 1) \}$ be another basis for R^3 . Find the matrix of L with respect to S and T. (10 marks)
- 3. Find bases for the range and kernel of the linear transformation $L: V_A \to V_A$ defined by $L(x_1, x_2, x_3, x_4) = (3x_1 + 2x_2, x_1 - x_3, x_1 - x_4, -x_3 + x_4)$ and check that $\dim(V_A) = rank(L) + nullity(L)$. (8 marks)
- 4. Verify whether the linear transformation $T(x_1, x_2, x_3, x_4) = (x_1 - x_4, x_2 + x_3, x_3 - x_4)$ defined from R⁴ to R³ is one to one and onto or not. (7 marks)
- 5. Find the characteristic polynomial and all the eigenvalues of the matrix

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
. Also find an eigenvector corresponding to the largest eigenvalue.

(10 marks)

6. Prove that the following limit does not exist:

$$\lim_{z \to 0} \frac{\operatorname{Re}(z^2)}{|z|^2}.$$
 (5 marks)

- 7. Show that f'(0) does not exist if $f(z) = \sqrt{|xy|}$, $z \neq 0$ and f(0) = 0. (8 marks)
- 8. Does the function $f(z) = (x^2 y^2 + 3x) i(2xy + 3y)$ have a derivative everywhere in the complex plane? Justify. (7 marks)

BITS-PILANI, DUBAI International Academic City, Dubai First Year-Semester-II (2008-09)

MATHEMATICS-II (MATH C192) Test-I (Closed Book)

TIME: 50 Minutes

Marks: 75

Weightage: 25%

15.03.2009

Answer all the questions sequentially.

1. For what values of a, b the linear system

$$x+y+3z=2$$
, $x+3y+2z=4$, $x+y+(a^2-1)z=b$
has (i) no solution (ii) unique solution (iii) infinitely many solutions (10)

2. Find the inverse of the following matrix using Gauss Jordan procedure:

$$\begin{pmatrix} 1 & 3 & -2 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \end{pmatrix} \tag{10}$$

3. Find a basis for the subspace $W = \operatorname{span} S$ of R^4 where $S = \{(1,0,0,-1), (0,1,2,1), (1,0,1,-1), (1,1,-6,-3), (-1,-5,1,0)\}$. What is $\dim W$?

4. Check whether the polynomials

$$t^3 + 2t + 1$$
, $t^2 - t + 2$, $t^3 + 2$, $-t^3 + t^2 - 5t + 2$ are LI? (10)

5. Find a basis and the dimension of the solution space of the system

$$x_1 + 3x_2 - x_3 + x_4 = 0$$
, $2x_1 + 2x_2 - x_3 + x_4 = 0$, $x_1 + 2x_2 - 3x_3 = 0$ (8)

6. Let
$$S = \{(1,2,-1), (1,9,-1), (-3,8,3)\}$$
 and let $V = span S$. Find a basis for V . What is dim V ? (7)

6. Is S a subspace of the indicated vector space? Justify.

$$S = \{(x, y, z, w)/z = x + 2y \text{ and } w = x - 3y\}, V = R^4$$
 (6)

7. Does $p(t) \in span S$ if $S = \{t^2 - t, t^2 - 2t + 1, -t^2 + 1\}$ and $p(t) = 2t^2 - t - 1$ (7)

8. Let V be the set of real numbers. Define \oplus by $u \oplus v = 3u + 5v - 6$ and \otimes by $c \otimes u = c^2 u$. Is V a vector space? Justify. (7)

All the Best!

BITS, PILANI, DUBAI MATHEMATICS-II (MATH C192) QUIZ-3 (SECTION-8)

TIME: 20 MINUTES

MAX. MARKS: 15

13.05.2009

1. Find the principal value of $(-3i)^{-1+i}$

2. Find the Laurent's series of $f(z) = \frac{z}{(z+4)(z-2)}$ when z lies inside the circle |z|=2

3. Evaluate $\int_C \frac{\sin z}{z^2 + 4z + 4} dz$ where C is given by |z + 2| = 1

BITS, PILANI, DUBAI MATHEMATICS-II (MATH C192) **QUIZ-2 (SECTION-8)** MAX. MARKS: 15

26.03.2009

1. Is
$$L(x,y) = (3x + 2y, -x + y + 6)$$
 a LT ? Justify.

2. Check whether
$$L(a+b) = (a+b)t^2 + (a-6b)$$
 is a LT? Justify.

2. Find
$$\ker L$$
 if $L: \mathbb{R}^3 \to \mathbb{R}^2$ given by $L: \mathbb{R}^3 \to \mathbb{R}^2$ given by $L: \mathbb{R}^3 \to \mathbb{R}^2$ Span $\{(7,3,-1)\}$ $L: \mathbb{R} \to \mathbb{R}^2$ KerL = Span $\{(7,3,-1)\}$

4. Is the LT L (ay,
$$q_2$$
) = (ay + 3 q_2 , $-a_2$) onto? Tushty. YES, rayer = \mathbb{R}^2

5. Find the range of
$$L(at+b) = (3a+b)t + (5a-b).$$

= span { 3++5, +-1}

BITS, PILANI, DUBAI MATHEMATICS-II (MATH C192)

Time: 20 minutes

Time: 20 minutes

QUIZ-2 (SECTION-8) MAX. MARKS: 15

26.03.2009

2. Check
$$L(at^2+bt+c)=(2a-b)t+(b+4c)kalt$$

3. Find the null space of the LT L:
$$\mathbb{R}^2 \to \mathbb{R}^3$$
 by $L(x,y) = (2x-y, 3x+4y, 7+y)$

4. Is the LT
$$L(a_1, a_2, a_3) = (0, a_2, a_4 - a_3)$$
 is one-one? Turkfy.

5. What is the range of the LT
$$L(x) = (x, 2x, -4x)$$
.

BITS, PILANI, DUBAI MATHEMATICS-II (MATH C192) QUIZ-2 (SECTION-8) MAX, MARKS: 15

26.03.2009

1. Is
$$L(x, y) = (3x + 2y, -x + y + 6)$$
 a LT ? Justify.

2. Check whether
$$L(a+b) = (a+b)t^2 + (a-6b)$$
 is a LT ? Justify.

LT? Jushfy.

3. Find
$$(\ker L)$$
 \dot{y} $L: \mathbb{R}^3 \to \mathbb{R}^2$ given by $L(x, y, \Xi) = (3x - 7y, y + 3\Xi)$

4. Is the LT L (a1,
$$q_2$$
) = (a1 + 3 q_2 , q_2) onto? Tushfy.

5. find the range of
$$L(a+b) = (3a+b)t + (54-b)$$
.

 \sim

BITS, PILANI-DUBAL MATHC192_ mathematics-II 04.03.2009 QUIZ-I Time: 20 mi 5 x 3 = 15 marks 1) Find the rank of if $A = \begin{bmatrix} 2 & 3 \\ 5 & 6 \end{bmatrix}$ Find B such thet- AB = I **(2)** Is (2,-1,8)∈ [S] where S= {(1,2,1), (-1,1,1), (3) (4, 2, -5)}? Justify. Is $S = \left\{ (a, b, c) \middle| a, b, c \text{ are real and } b = 2a + i \right\}$ subspace of R3? Justify. (5) Is S= \(\frac{1^2}{4}, \frac{5t^2}{5t^2} \frac{5t}{4}, \frac{t+2}{3} \quad LI? \text{Justify}. BITS, PILANI - DUBAI 04.03.09 MATH C192 - Mathematics-11 Time: 20 min QUIZ-I SECTION-8 5×3= 15 marks x-2y=4, y+3z=1, x-y+z=3. Find A if $A^{-1} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$ Js $x+2 \in [S]$ if $S = \{x^2+5, x-1, x+2\}$? Is $S = \left((a, b, c) \middle| a = 3b \text{ or } b + c = 0 \right)$ a subspace

of $\mathbb{R}^{3?}$ Justify. $S = \{(2,2,3), (-1,-2,1), (0,1,0)\}$ LI? Justify.

DUBAI INTERNATIONAL ACADEMIC CITY

1 YEAR – II SEMESTER 2008-2009

QUIZ-III(CB)

Course: Mathematics - II

Section - VI

Course No:MATH C192

Max.Marks:15

Weightage:5%

Time: 15 Mins. Dt.29-4-09

Name:

ID. No.

- 1. The largest eigen value of the matrix $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ is ______
- 2. If $L: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $L(x_1, x_2, x_3) = (x_1 x_2 + x_3, x_1 + x_2, x_2 x_3)$, then the coordinates of (1,2,-1) with respect to the basis $S = \{(1,0,1), (0,1,-1), (0,0,1)\}$ are ______
- 3. Find the inverse of $\sqrt{2} + i\sqrt{3}$
- 4. Imaginary component of the function f(z) = (z + 2i)(-2z 3) is _____
- 5. The Principal Value of i^{2i} is_____

DUBAI NTERNATIONAL ACADEMIC CITY

1 YEAR - II SEMESTER 2008-2009

QUIZ-1I (CB)

Course: Mathematics - II	Section - VI	Course No:MATH C192		
Max.Marks:15	Weightage:5%	Time:15 Mins. Dt.26-3-09		
Name: ID. No.				
1. The basis for the solution $x_2 + 2x_3 = 0$; $x_1 + 2x_2 = 0$	ons space of the homogen + $3x_3 = 0$; $x_1 + 3x_2 + 5x_3$			
2. Coordinate vector of $(1, S) = \{(-1,1,0), (0,1,-1), (1,0)\}$,-1,2) with respect to the ,0,1)} is			
3. If $L: P_2 \to P_3$ is a linear $L(1) = 1, L(t) = t^3, L(t^2)$	transformation for which $t = t^2 + t$ then $L(2t^2 - 5t)$			
4. If $L: \mathbb{R}^2 \to \mathbb{R}^2$ is define	ed as $L(x, y) = (0, y)$, th	en ker L =		
5. Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be def	fined by $L(x, y, z) = (x - y)$	y, x + 2y) is		

b) d)

onto None

a)

one-to-one

one-to-one & onto

DUBAI NTERNATIONAL ACADEMIC CITY

1 YEAR - II SEMESTER 2008-2009

QUIZ-1 (CB)

Course: Mathematics - II

Section - VI

Course No:MATH C192

Max.Marks:15

Weightage:5%

Time:15 Mins. Dt.4-3-09

Name:

ID. No.

1. The row reduced echelon form of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & -9 \\ 2 & -1 & 1 & -8 \\ 3 & 0 & -1 & -3 \end{bmatrix}$$
 is _

- 2. Let V be the set of all positive real ordered pairs, with usual addition of vectors '+' and scalar multiplication '*' is not a vector space. Give one property, which it fails to satisfy (with details).
- 3. Express the vector v = (3,7) as a linear combination of the vectors in the basis $S = \{v_1 = (1,2), v_2 = (0,1)\}.$

DUBAI INTERNATIONAL ACADEMIC CITY

1 YEAR - II SEMESTER 2008-2009

QUIZ-1I (CB)

Course	e : Matl	hematics - II	Section - V	Cours	e No:MATH C192
Max.N	/larks:1	5	Weightage:59	% Time:	15 Mins. Dt.29-3-09
Name: ID. No.					
1.	equati	asis and dimension of ons $x_2 + x_3 - x_4 = 0.2x_1 + x_4$			
2.		coordinate vector of 5 - $\{t^2 + t + 1, t + 1, 1\}$ is			
3.	L(1,-1	$R^3 \to R^3$ is a linear tra 1,0) = (3,0,1), L (0,1,-1) 2 b , c) =	=(1,0,3), L(-1,1)		en
4.		$R^3 \rightarrow R^3$ is a linear tra (x, z) = (x + 2y, 2x + y, z)			
5.	If <i>L</i> : <i>L</i>	$R^2 \to R^3$ is a linear tra	nsformation de	fined as $L(x, y)$	= (x,2x+y,y) ther
	a)	Onto	b)	One to one	
	c)	One to one & onto	d)	None	

DUBAI NTERNATIONAL ACADEMIC CITY 1 YEAR – II SEMESTER 2008-2009

QUIZ-1 (CB)

Course: Mathematics - II

Section - V

Course No:MATH C192

Max.Marks:15

Weightage:5%

Time:15 Mins. Dt.5.3.09

Name:

ID. No.

2x + y - z = 0

1. The homogeneous system of equations x - 2y - 3z = 0 has a non trivial -3x - y + az = 0

solution if a =_____

- 2. Express v = (-1,4,2,2) as a linear combination of the vectors in $S = \{v_1 = (1,0,0,1), v_2 = (1,-1,0,0), v_3 = (0,1,2,1)\}$
- 3. Let V be the set of all positive real numbers. The vector addition '+' and scalar multiplication '*' are defined as u+v=u+v-uv; $c*u=u^c$ Check the associative property of vector addition.

DUBAI NTERNATIONAL ACADEMIC CITY

1 YEAR - II SEMESTER 2008-2009

QUIZ-1 (CB)

Course: Mathematics - II

Section - V

Course No:MATH C192

Max.Marks:15

Weightage:5%

Time:15 Mins. Dt.5-3-09

Name:

ID. No.

2x + y - z = 0

1. The homogeneous system of equations x-2y-3z=0 has only $-3x-y+(a^2-2)z=0$

trivial solution if a =_____

2. Let V be the set of all positive real ordered pairs, with addition of vectors '+' and scalar multiplication '*' defined as

$$(x_{1}, y_{1}) + (x_{2}, y_{2}) = (x_{1}x_{2}, y_{1}y_{2}) ; c * (x, y) = (cx, cy)$$

is not a vector space.

Give one property, which it fails to satisfy (with details).

3. Express the vector v = (4,6,8,6) as a linear combination of the vectors $v_1 = (1,1,2,1), v_2 = (1,0,0,2), v_3 = (0,3,2,1)$.

dun kan

BITS, PILANI, DUBAI MATHEMATICS-II (MATH C192) QUIZ-3 (SECTION-4) MAX. MARKS: 15

TIME: 20 MINUTES

12.05.2009

1. Find the principal value of $(1+i)^{2i}$

2. Evaluate $\int_C (z^2 + 4)dz$ where C is the straight line joining 1 and 1+i.

3. Evaluate
$$\int_C \frac{e^{2z}}{z^2 + 9} dz$$
 where C is given by $|z - 3i| = 1$

BITS, PILANI, DUBAI MATHEMATICS-II (MATH C192) QUIZ-2 (SECTION-4)

MAX. MARKS: 15

29.03.2009

- Check whether $L: \mathbb{R}^3 \to \mathbb{R}^3$ by $L(\pi, 4, \Xi) = (4, 2, -7)$ is a LT? NO
- 2. Find the coordinate vector of v = (6, -2, 1)W. r. to the basis 8= { (1,0,0), (0,2,4), (0,0,5)}
- Find the Kernel of $L: \mathbb{R}^2 \to \mathbb{R}^3$ by $\begin{bmatrix} vJ_s = \begin{bmatrix} 6 \\ -1 \end{bmatrix} \end{bmatrix}$ $L(x,y) = (x-2y, 3x+4y,x) \text{ Ker } L = \{(0,0)\}$
- L(at2+6t+c)= (2a+b)t-(3a+c) raret fat-3, 1?

 ind L: $\mathbb{R}^2 \to \mathbb{R}^2$ is L(1)? 4. Find the range of L: B -> By
- find L: 122 R2 if L(1,2)=(4,-1), L(0,1)=(2,3) given thet L is a LT. L(x,y)=(2y, 3y-7x)

BITS, PILANI, DUBAI **MATHEMATICS-II (MATH C192)** QUIZ-2 (SECTION-4)

TIME: 20 MINUTES

MAX. MARKS: 15

29.03.2009

1. Check whether
$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
 by
$$L(x,y,z) = (0,0,0) \text{ is a } LT? \text{ YRS}$$

2. Find the coordinate vector of
$$2t-4$$
 Wir. to the baris $S=\{t-1,t+1\}$. $[NJ_S=[-1]]$

L(x, y,
$$\neq$$
) = $(2x+3y, x-2)$, $(1,-43,1)$?
KerL = $\{y \in \{1,-43,1\}\}$?
4. Find the range of L: $P_3 \rightarrow P_2$ by

L(
$$at^3+bt^2+ct+d$$
) = $(a-b)t^2+(2a-c)t$.
range L spart t^2+2t , t }.
5. Find the LT L: R^2 , R^2 by

$$L(2,3) = (1-1), L(0,2) = (1,2).$$

$$-\cos \gamma - L(\eta, y) = \left(\frac{2y - \kappa}{4}, y - 2\eta\right)$$

BITS, PILANI, DUBAI MATHEMATICS-II (MATH C192) QUIZ-2 (SECTION-4)

TIME: 20 MINUTES

MAX. MARKS: 15

29.03.2009

- 1. Check whether $L: \mathbb{R}^3 \to \mathbb{R}^3$ by $L(\pi, 4, \Xi) = (4, 2, -7)$ is a LT?
- 2. Find the coordinate vector of v = (6, -2, 1) v = (6, -2, 1) v = (6, -2, 1) v = (6, -2, 1)v = (6, -2, 1)
- 3. Find the Kernel of $L: \mathbb{R}^2 \to \mathbb{R}^3$ by L(x,y) = (x-2y, 3x+4y, x)
- 4. Find the range of $L: P_2 \rightarrow P_3$ by $L(at^2+bt+c)=(2a+b)t-(3a+c)$
- 5. Find $L: \mathbb{R}^2 \to \mathbb{R}^2$ if L(1,2) = (4,-1), L(0,1) = (2,3)given thet- L is a LT.

BITS, PILANI, DUBAI MATHEMATICS-II (MATH C192) QUIZ-2 (SECTION-4)

B

TIME: 20 MINUTES

MAX. MARKS: 15

29.03.2009

- 1. Check whether $L: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ by $L(x,y,\Xi) = (0,0,0) \text{ is a LT?}$
- 2. Find the coordinate vector of 2t-4 Wir.to the baris $S=\{1, t+1\}$.
- 3. Find the null space of $L: \mathbb{R}^3 \to \mathbb{R}^2$ by $L(x,y,\Xi) = (2x+3y, x-\Xi).$
- 4. Find the range of L: $B_3 \rightarrow B_2$ by $L(at^3+bt^2+ct+d)=(a-b)t^2+(2a-c)t$.
- 5. Find the LT L: $R^2 \rightarrow R^2$ by L(2,3) = (1-1), L(0,2) = (1,2).

- 000 -

MATH C192 - Mathematics-I

5×3 = 15 marks

QUIZ-I SECTION-4

04,03,09 time: 20 min.

1. For what values of a , the system x+2y-3z=0, 2x+y-4z=0, x-y+9z=0 not have non-zero Adultions? Justity your answer.

Q. Is $S = \frac{1}{2} p \in \mathcal{O} / p'(x) = x p(x) + 2 \frac{1}{2} a$ subspace P? Justify.

LI? Justify. \$ S = { (1, -2, 4), (4, -1, 5), (3,1,0)}

 $SFA = \begin{bmatrix} 1 & 3 & 7 & find & A^{-1} \\ -1 & 6 & 7 \end{bmatrix}$

 $SS (1,-2,2) \in ISJ \text{ if } S=\{(2,1,3),(-1,1,4),$

Justify.

BITS, PILANI - DUBAH [3]

MATH C192 - methernatics-11

04.03.09 me: 20 min.

573 = 15 marks

(1) Find the rank of

2) Is $S = \begin{cases} (a,b,c) \mid a+b=-2c \end{cases}$ a subspace of R32 Justify.

(3) Is $S = \{(3,2,7), (1,1,0), (2,4,6)\}$ LI! Justity.

A If $A^{-1} = \begin{bmatrix} 1 & 2 & 7 \\ -1 & 5 \end{bmatrix}$, find A.

(5) Is $t^2 = 2t + 5 \in LSJ$ if $S = \begin{cases} t^2 + 2t - 4, \\ t = 9, t^2, \end{cases}$ t-2, t2+5}? Justify.

BITS, PILANI – DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

(I YEAR – II SEMESTER 2008-2009)

SerA

QUIZ - III (CB)

Max. Marks: 15	Weightage: 5%	Date: 22-4-2009	Time: 15 Mins.
Name :	Id. N	Io.:	Sec.: II
Attempt all the question Each question carries	Id. No in the space provided ons. Total number of questio 3 marks. Specific answer is answers will be treated as in	ns: 5 required, not the formula.	
Fill in the blanks	with correct answers:		
1. The charact	eristic roots of the matr	$\operatorname{ix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ are	
2. If $L_1: R^2$	$\rightarrow R^2$ and $L_2: R^2 \rightarrow R^2$	R ² be two linear transfor	rmation defined by
$L_{1}(x,y)=($	$(x+y, x-2y)$ and $L_2(x, y)$	$y) = (y, x - y)$, then (L_2)	$\circ L_1)(2,2) = $
and $(L_1 \circ L_2)$)(2, 2) =	·	
3. The moduli	us and the principal argu	ument of $(1+i)^2$ are respe	ectively and
4. If f(z) = z	$+\frac{1}{z}=u(x,y)+iv(x,y),$	then $v(x, y) = $	·
5. The cube ro	oots of 3 will lie on a cir	cle of radius	·

Time: 15 Mins.

QUIZ - III (CB)

MATHEMATICS-II (MATH C192)

Max. Marks: 15	Weightage: 5%	Date: 22-4-2009	Time: 15 Mins.
Name :	Id. N	Io.:	Sec.: II
Attempt all the question Each question carries	Id. No in the space provided ons. Total number of questions a 3 marks. Specific answer is answers will be treated as in	ns: 5 required, not the formula.	
Fill in the blanks	with correct answers:		
1. The charac	teristic polynomial of th	e matrix $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ is	<u> </u>
2. If $L_1: R^2$	$\rightarrow R^2$ and $L_2: R^2 \rightarrow R^2$	R^2 be two linear transfo	rmation defined by
$L_{1}(x,y)=0$	$(x+y, x-2y)$ and $L_2(x+y, x-2y)$	$(x, y) = (y, x - y)$, then (L_2)	(0,0)
and $(L_1 \circ L_2)$	₂)(2,1) =	·	
3. The modul	us and the principal arg	ument of $(1-i)^2$ are respectively.	ectively and
4. If f(z) = z	$\frac{1}{z+\frac{1}{z}}=u(x,y)+iv(x,y),$	then $u(x, y) = $	·
5. The cube r	oots of 2 will lie on a cir	cle of radius	

QUIZ – II (CB)

Max. Marks	15 Weighta	ge: 5%	Date:	25-3-2009	Time: 15 Min	S.
Name:		Id. No.	:	_	Sec.: II	
Attempt all the Each question	ne and Id. No in the s questions. Total num carries 3 marks. Spec altiple answers will be	ber of questions ific answer is re	quired, not i			,
Fill in the bl	anks with correct	answers:				
l. A sys	tem of linear hom	ogeneous equ	ations wit	h four unk	knowns x, y, z, w has the	he
soluti	on: $x = -2k + 3l,$	y = -2l, z = k	, w = l who	ere kand	lare arbitrary re	al
numb	ers. The dimension	n of the solution	n space is	;		
2. For a	linear transformati	$on L: V \to W$	if the ran	k of L = 2	and the dim $V = 4$, the	en
the nu	llity of $L = $	·				
3. Let <i>S</i>	$= \{(1,0),(1,-1)\} be$	e an ordered l	pasis of <i>I</i>	R^2 . Then t	he coordinates of (2,2	2)
with r	espect to the basis	S are		_ •		
Tick the c	orrect answer:					
4. The lin	ear transformation	$\operatorname{n} L \colon R^2 \to R^2$	defined by	L(x,y) =	(x+y,x-y) is	
a) onto	but not one-to-or	ne b) one-to	-one but r	not onto	c) onto and one-to-on	e
d) non	e of these					
5. If <i>L</i> :	$R^2 \to R^3$ is a linear	er transformat	ion define	ed by $L(x, x)$	(y) = (x, x + y, y), the	n
which	of the following is	true?				
a) (1, 2	3) ∈ rangeL	b) (1, 0, -1) ∈ rangel	5	c) $(4,2,3) \in rangeL$	
d) none	of these					

QUIZ - II (CB)

Max	. Marks: 15	Weightage	2: 5%	Date:	25-3-200)9	Time: 15	Mins
Nam	e: —		Id. No.:				Sec.: II	
Attem Each	E: your Name and I pt all the question question carries 2 vriting/multiple an	ıs. Total numbe 3 marks. Specific	r of questions: 5 c answer is requ	ired, not		i.		
Fill i	n the blanks w	ith correct an	swers:					
1.	For a linear t	ransformation	$nL:V\to W$ is	f the rai	$nk ext{ of } L = 2$	2 and the	dim V=	5, the
	the nullity of	`L =	·					
2.	A system of	linear homog	geneous equati	ons wit	:h four un	knowns	x, y, z, w	as the
	solution: x	= -2k + 3l, y	=-2l, z=k, w	y = l wh	ere k an	d lare	arbitrary	rea
	numbers. The	e dimension o	f the solution	space is	}			
3.	Let $S = \{(1, 0)\}$	(1,-1) be a	n ordered bas	sis of I	R^2 . Then	the coor	dinates of	f (1,2)
	with respect t	o the basis S	are		_ •			
Ti	ck the correct	answer:						
4.	If $L: \mathbb{R}^2 \to \mathbb{R}$	R³is a linear	transformation	n defin	ed by $L(x)$	(x,y)=(x)	(x, x + y, y)	, then
	which of the f							
	a) $(1,2,3) \in ra$	angeL	b) $(1,0,1) \in I$	rangeL		c) (-1	$(2,3) \in ra$	ngeL
	d) none of the	se						
5.	The linear tran	nsformation $\it L$	$: R^2 \to R^2 \operatorname{def}$	ined by	L(x, y) =	=(x+y,x)	: - y) is	
	a) onto but no	t one-to-one	b) one-to-or					o-one
	d) none of the	se						

QUIZ - I (CB)

Max. Marks: 15	Weightage: 5%	Date:	04-3-2009	Time: 15 Mins.
Name:	Io	I. No.:		Sec.: II
Attempt all the questi Each question carries	l Id. No in the space prov ons. Total number of que s 3 marks. Specific answe answers will be treated a	estions: 15 er is required, no		
Fill in the blanks	with correct answers	<i>:</i>		
1. Consider t	he system: $x + 2y =$	$0, 3x + (2 - \lambda)$	y = 0. The value	ie of λ for which the
above system	em has non-trivial sol	ution is		_,
2. If A is an i	invertible matrix of o	rder 2, then the	e reduced row	echelon form of A is
	<u> </u>			
3. The standa	ard or natural basis of	P ₂ is		
4. Which of t	he following vectors	is linearly inde	ependent? (Tick	the correct answer)
a) {(1,2),(2, 2), (1, 1)} b) {(2, 1)),(0,0)} c)	{(2,1),(1,2)}	d) none of these.
5. If <i>V</i> is a 3	3-dimensional vector	space and W	is a nonzero su	v_{i} ubspace of V_{i} , then the
set of value	es that $\dim W$ can tak	e is {		}.

QUIZ - I (CB)

Max. N	Marks: 15	Weightage: 5%		Date:	04-3-2009	Time: 15 Mins.
Name	: ———		Id. No.:			Sec.: II
Attempt Each qu	all the question estion carries	ld. No in the space prons. Total number of qu B marks. Specific answ Inswers will be treated	uestions: 15 ver is requi	red, not	the formula. r.	
Fill in	the blanks w	ith correct answer	s:			
1.	Consider the	e system: $x + 2y =$	0, 3x + (3)	$(3-\lambda)y$	y = 0. The val	ue of λ for which the
	above systen	n has non-trivial so	olution is _			
2.			order 3, th	en the	reduced row	echelon form of A is
		·				
3.	The standard	or natural basis of	P_3 is	-		•
4.	Which of the	following vectors	is linearly	indep	endent? (Tick	the correct answer)
8	a) $\{(1,2),(2,2)\}$	2),(1,1)} b) {(2,1)),(0,0)}	c) {((2,1),(4,2)	d) none of these.
5.]	If V is a 2-d	imensional vector	space and	l W is	a nonzero su	obspace of V , then the
		that dimW can take				

BITS, PILANI – DUBAI DUBAI INTERNATIONAL ACADEMIC CITY

1 YEAR – II SEMESTER 2008-2009

QUIZ-1II (CB)

Course: Mathematics - II

Section -I

Course No:MATH C192

Max.Marks:15

Weightage: 5%

Time: 15 Mins. Dt.7.5.09

Name:

ID. No.

1. The characteristic polynomial of the matrix

2 3 2

1 2 0 is _____

2 - 2 2

2. An eigen vector corresponding to the eigen value λ = 4 for the matrix

$$\begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$$
 is ______

3. The x+iy form of the complex number 5i(3-i2)/2+i is_____

4.
$$(\frac{-1+i\sqrt{3}}{2})^{1/3} = \underline{\hspace{1cm}}$$

5. The real component of Sin(z) is _____

BITS, PILANI – DUBAI DUBAI NTERNATIONAL ACADEMIC CITY 1 YEAR – II SEMESTER 2008-2009

QUIZ-II(CB)

Course	: Mathematics - II	Section -I	Course No: MATH C192
Max.M	farks:15	Weightage:5%	Time:15 Mins. Dt.29.3.09
Name:		ID). No.
1.		a space of homogeneous -3z = 0, -3x - y + 2z = 0	
2.		of $3 + 3t + 2t^2$ relative to	
3.		ar transformation for who (1,2) then $L(4,-5) = $	
4.	If $L: \mathbb{R}^3 \to \mathbb{R}^3$ is a line then the Ker $L =$		d as $L(x, y, z) = (x + y, x - y, z)$
5.	If $L: \mathbb{R}^2 \to \mathbb{R}^3$ is a line $L(x, y) = (x - y, x + 2y)$	ar transformation define (x) then b (8)	d as
	a) One to one	b) Or	nto
	c) One to one & or	nto d) No	ne.

DUBAI NTERNATIONAL ACADEMIC CITY

1 YEAR - II SEMESTER 2008-2009

OUIZ-1 (CB)

	QUIL 1 (UL)	
Course : Mathematics - II	Section - I	Course No:MATH C192
Max.Marks:15	Max.Marks: 15 Weightage: 5%	
Name:	ID. 1	No.
The row reduced echelon	form of the matrix	
$A = \begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix}$	$ \begin{array}{cccc} 9 & 2 & -1 \\ 4 & 1 & -1 \\ 4 & 1 & -1 \end{array} $	is
2. If the linear system of equ	x + y - z = 2; uations $x + 2y + z = 3$	is consistent, then the
value of 'a' is	$x+y+(a^2-9)z$	= a

Let V be the set of all real numbers, the addition of vectors '+' and scalar multiplication '*' are defined as u + v = u - 3 v and c * u = cu is not a vector space. Give one property, which it fails to satisfy.

DUBAI NTERNATIONAL ACADEMIC CITY

1 YEAR - II SEMESTER 2008-2009

QUIZ-1 (CB)

Course: Mathematics - II	Section - I	Course No:MATH C192
Max.Marks:15	Weightage:5%	Time:15 Mins.
Name:	ID. N	No.

1. The row reduced echelon form of the matrix

$$A = \begin{bmatrix} 5 & 9 & 2 & -1 \\ 4 & 4 & 1 & -1 \\ 2 & 4 & 1 & -1 \end{bmatrix}$$
 is ______.

$$x + y - z = 2;$$

2. If the linear system of equations $x + 2y + z = 3$ is consistent, then the $x + y + (a^2 - 9)z = a$ value of 'a' is _____.

Let V be the set of all real numbers, the addition of vectors '+' and scalar multiplication '*' are defined as u + v = u - 3 v and c * u = cu is not a vector space. Give one property, which it fails to satisfy.