BITS, PILANI - DUBAI
 DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI
 $1^{\text {st }}$ Year Second Semester -2008
 Course: ES UC112 Thermodynamics
 Comprehensive Examination [Closed Book]

COMMON TO ALL BRANCHES
Date: 29 / 05/2008
Weightage: 40 \%
Time : $\mathbf{3}$ hours
Note: (i) Answer all Question in a sequence
(ii) Assume suitable value if required
(iii) Thermodynamics tables are permitted
[Page: From 653 to $722 \&$ From 726 to 778$]$
(iv) Answer Every Question on a fresh page
(v) Answer all the questions in the BLUE COLOUR main answer sheet only

One kg of air at a pressure of $\mathbf{8} \mathrm{bar}$ and a temperature of $100^{\mathbf{0}} \mathrm{C}$ undergoes a reversible polytropic process following the law $\mathbf{p v}{ }^{\mathbf{1 . 2}}=\mathrm{C}$. If the final pressure is

1.8 bar, determine

a) The final specific volume and Final temperature
b) The work done and heat transfer
[Assume: Characteristic gas constant $\mathbf{R}=\mathbf{0 . 2 8 7} \mathbf{~ k J} / \mathbf{k g ~ K}$ and Ratio of specific heats $\gamma=1.4]$.
[10 Marks]

A piston/cylinder contains $\mathbf{5 0} \mathbf{~ k g}$ of water at $\mathbf{2 0 0} \mathbf{~ k P a}$ with a volume of $\mathbf{0 . 1} \mathbf{m}^{\mathbf{3}}$ as shown in Fig 1. Stops in the cylinder are placed to restrict the enclosed volume to a maximum of $0.5 \mathrm{~m}^{\mathbf{3}}$. The water is now heated until the piston reaches the stops. Find the necessary work and heat transfer.
[12 Marks]

Fig. 3

6. Air enters an adiabatic nozzle operating at steady state as shown in Fig. 4. At the inlet, the pressure is $\mathbf{1 8 0} \mathbf{~ k P a}$ and the temperature is $65^{\circ} \mathrm{C}$. At the outlet, the pressure is $\mathbf{1 0 0} \mathbf{~ k P a}$ and velocity is $\mathbf{3 0 0} \mathbf{~ m} / \mathrm{s}$. The mass flow rate of air is $0.15 \mathrm{~kg} / \mathrm{s}$ and the isentropic exit temperature of the nozzle is 285.75 K Assume the change in the Inlet velocity of the nozzle is negligible when compared with Exit velocity, Potential energy is zero and Nozzle is completely insulated. Take the enthalpy of air as $\mathbf{h}=\mathbf{c}_{\mathbf{p}} \mathbf{t}$, where \mathbf{c}_{p} is equal to $1.005 \mathrm{~kJ} / \mathbf{k g} \cdot \mathbf{k}$, Gas constant $\mathrm{R}=\mathbf{0 . 2 8 7} \mathbf{k J} / \mathrm{kg}$.k.
[12 Marks]

FIG. 4
7. Write short notes on the following:
(i) Available Energy (ii) Psychrometric Properties
[8 Marks]

BITS, PILANI - DUBAI
 DUBAI INTERNATIONAL ACADEMIC CITY
 DUBAI

I st Year II nd Semester 2007-2008
Course: ES UC112 Thermodynamics
Test: II [Open Book]
Max.Marks :20
Date: 27 / 04/2008
Weightage : 20 \%
Time : 50 min

Note: (i) Answer all Question.
(ii) Assume suitable value if required.
(iii) Thermodynamics tables are permitted.
(iv) Strictly prohibited to use of solution manual related to a Thermodynamics subject.
(v) Photocopy of the text books and class notes are strictly not permitted.

1. Air at a temperature of $15{ }^{0} \mathrm{C}$ passes through a heat exchanger at a velocity of $30 \mathrm{~m} / \mathrm{s}$ where its temperature is raised to $800^{\circ} \mathrm{C}$ as shown in Fig. 1. It then enters a turbine with the same velocity of $30 \mathrm{~m} / \mathrm{s}$ and expands until the temperature falls to $650{ }^{\circ} \mathrm{C}$. On leaving the turbine, the air is taken at a velocity of $60 \mathrm{~m} / \mathrm{s}$ to a nozzle where it expands until the temperature has fallen to $500^{\circ} \mathrm{C}$. If the air flow rate is $2 \mathrm{~kg} / \mathrm{s}$, calculate (a) the rate of heat transfer to the air in the heat exchanger, (b) the power output from the turbine assuming no heat loss, and (c) the velocity at exit from the nozzle, assuming no heat loss. Take the enthalpy of air as $h=c_{p} t$, Assume specific heat for air $\left.\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{k}\right]$
[8 Marks]

2. Consider the piston/cylinder arrangement shown in Fig. 2. A frictionless piston is free to move between two sets of stops. When the piston rests on the lower stops, the enclosed volume is 400 L When the piston reaches the upper stops, the
volume is 600 L . The cylinder initially contains water at $100 \mathrm{kPa}, 20 \%$ quality. It is heated until the water eventually exists as saturated vapor. The mass of the piston requires 300 kPa pressure to move it against the outside ambient pressure. Determine the final pressure in the cylinder, the heat transfer and the work for the overall process.

FIGURE: 2
3. A refrigerator needs to make a tray of 0.25 kg of liquid water at $10^{\circ} \mathrm{C}$ is converted into ice cubes at $0^{\circ} \mathrm{C}$. Assume the refrigerator works in a Carnot cycle between $\quad-8^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$. Calculate the amount of work input for the refrigerator.
[5 Marks]

BITS, PILANI - DUBAI
 DUBAI INTERNATIONAL ACADEMIC CITY
 DUBAI
 I st Year II nd Semester 2007-2008
 Course: ES UC112 Thermodynamics
 Test: 1 [Closed Book]

Date: 09 / 03/2008
Weightage : 25%
[COMMON TO ALL BRANCHES]

1. Water is contained in a cylinder fitted with a frictionless piston, as shown in Fig.1. The mass of water is 1 kg and the area of the piston is $0.5 \mathrm{~m}^{2}$. At the initial state the water is at $110^{\circ} \mathrm{C}$, with a quality of 90%, and the spring just touches the piston, but exerts no force on it. Now heat is transferred to the water, and the piston begins to rise. During this process, the resisting force of the spring is proportional to the distance moved, with a force of $10 \mathrm{~N} / \mathrm{mm}$. Calculate the pressure in the cylinder when the temperature reaches $200^{\circ} \mathrm{C}$.
[10 Marks]

2. The cylinder shown in Fig. 2 contains 1 kg of saturated water at $30^{\circ} \mathrm{C}$. The piston has a cross sectional area of $0.065 \mathrm{~m}^{2}$, a mass of 40 kg , and is resting on the stops as shown. The volume at this point is $0.1 \mathrm{~m}^{3}$, Atmospheric pressure out side is

94 kPa , and the local gravitational acceleration is $9.75 \mathrm{~m} / \mathrm{s}^{2}$. Heat is now transferred to the system until the cylinder contains saturated vapor. [Assume specific heat for water $\left.\mathrm{c}_{\mathrm{p}}=4.195 \mathrm{~kJ} / \mathrm{kg} . \mathrm{k}\right]$
(a) What is the temperature of the water when the piston first rises from the stops?
(b) Calculate the heat transfer to the system during the process.
(c) Calculate the work done by the water during the overall process.
[9 Marks]

3 To a closed system 150 kJ of work is supplied. If the initial volume is $0.6 \mathrm{~m}^{3}$ and pressure of the system changes as $p=8-4 V$, where p is in bar and V is in m^{3} determine the final volume and pressure of the system.

