BITS, PILANI-DUBAI
 INTERNATIONAL ACADEMIC CITY, DUBAI

FIRST YEAR - SEMESTER-II (2007-08)
MATHEMATICS-II (MATH C192)
COMPREHENSIVE EXAMINATION (CLOSED BOOK)

Answer all the questions.

Answer Part A, Part B and Part C in separate Answer Books.

Part-A

1. Test for consistency of the following linear system of equations and if so solve completely

$$
\begin{equation*}
x+y+2 z=-1, x-2 y+z=-5,3 x+y+z=3 . \tag{10}
\end{equation*}
$$

2. Verify whether the following set of vectors in R^{4} is linearly dependent. If it is so, express one vector as a linear combination of rest

$$
\begin{equation*}
\{(1,1,2,10),(1,0,0,2),(4,6,8,6),(0,3,2,1)\} \tag{10}
\end{equation*}
$$

3. Let $L: R^{3} \rightarrow R^{3}$ be defined by $L(x, y, z)=(x-y, x+2 y, z)$. Find ker L, range L and verify Rank-Nullity theorem.
4. Let $L: R^{3} \rightarrow R^{3}$ be defined by $L(x, y, z)=(x+2 y+z, 2 x-y, 2 y+z)$. Let S be the natural basis for R^{3} and let $T=\{(1,0,1),(0,1,1),(0,0,1)\}$ be another basis for R^{3}. Find the matrix of L with respect to S and T.

Part- B

5. Check whether the linear transformation $T: R^{3} \rightarrow R^{3}$ defined by $T(x, y, z)=(x+z, y+z, x+2 z)$ is nonsingular and if so, find T^{-1}
6. Find the eigenvalues and eigenvectors of $A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -5 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$
7. Show that the function $f(z)=z^{2} e^{-z}$ is entire and hence find its derivative.
8. Show that $\log (1+i)^{2}=2 \log (1+i)$ but $\log (-1+i)^{2} \neq 2 \log (-1+i)$.

Part-C

9. Evaluate $\int_{C} f(z) d z$ where $f(z)$ is defined by the equations $f(z)=\left\{\begin{array}{l}1, \text { when } y<0 \\ 4 y, \text { when } y>0\end{array}\right.$ and C is the arc from $z=-1-i$ to $z=1+i$ along the curve $y=x^{3}$.
10. Find the Laurent's series that represents the function $f(z)=\frac{z+2}{z^{2}-5 z+6}$ in the
domain $0<|z-2|<1$

11 Evaluate the integral $\int_{C} \tan z d z$, where C the positively oriented circle $|z|=2$.
12. Use residues to evaluate the improper integral $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$.
13. Use residues to evaluate the definite integral $\int_{-\pi}^{+\pi} \frac{d \theta}{1+\sin ^{2} \theta}$

BITS-PILANI, DUBAI
 First Year-Semester-II (2007-08)

MATHEMATICS-II (MATH UC192)

Test-2 (Open Book)

Time: 50 Minutes	Marks; 60	Weightage: 20%	$8^{\text {th }}$ May, 2008

NOTE: 1.Only the Prescribed Text books and Class Notes are allowed. 2. Answer the questions in serial order.

1. Determine the eigenvalues and eigenvectors of A^{-1} if $A=\left[\begin{array}{ccc}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right.$
2. If $f(z)=\frac{x^{3} y(y-i x)}{x^{6}+y^{2}}, z \neq 0$, show that the Cauchy-Riemann equations are satisfied at

$$
\begin{equation*}
0, \quad z=0 \tag{10}
\end{equation*}
$$

the origin but $f^{\prime}(0)$ does not exist.
3. Find all the roots of $(-8-i 8 \sqrt{3})^{\frac{1}{4}}$ and exhibit them geometrically.
4. Find the real and imaginary parts of $\log [(1+i) \log i]$
5. Find the constants a, b, c such that the function

$$
\begin{equation*}
f(z)=-x^{2}+x y+y^{2}+i\left(a x^{2}+b x y+c y^{2}\right) \tag{8}
\end{equation*}
$$

is analytic. Express $f(z)$ in terms of z.
6. Evaluate the integral $\int_{C} \operatorname{Re}\left(z^{2}\right) d z$ from 0 to $2+4 i$ along the
(i) x-axis from 0 to 2 , and then vertically to $2+4 i$,
(ii) Parabola $y=x^{2}$.
7. Show that the function $u(r, \theta)=r^{2} \cos 2 \theta$ is harmonic. Find the conjugate harmonic function and the corresponding analytic function $f(z)$.

BITS-PILANI, DUBAI

First Year-Semester-II (2007-08)

MATHEMATICS-II (MATH UC192) Test-I (Closed Book)

1. Find an equation relating a, b, c, so that the linear system

$$
\begin{equation*}
x+2 y-3 z=a, 2 x+3 y+3 z=b, 5 x+9 y-6 z=c \tag{9}
\end{equation*}
$$

is consistent for any values of a, b and c that satisfy the equations.
2 Find the inverse of the following matrix using Gauss Jordan procedure:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \tag{9}\\
1 & 1 & 2 \\
0 & 1 & 2
\end{array}\right)
$$

3. Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$, where $v_{1}=(1,1,0,-1), v_{2}=(0,1,2,1), v_{3}=(1,0,1,-1)$ $v_{4}=(1,1,-6,-3)$ and $v_{5}=(-1,-5,1,0)$. Find a basis for the subspace $W=\operatorname{span} S$ of R^{4}. What is $\operatorname{dim} W$?

4 Let $S=\left\{x^{3}+2, x^{2}+2 x+1, x^{2}-x+2,-x^{3}+x^{2}-5 x+2\right\}$ Check whether S spans P_{3}.
5. Check whether the set $S=\{(1,1,2,1),(1,1,1,0),(1,0,0,2),(0,3,2,1)\}$ is linearly independent in R^{4} ?
6. Which of the following are subspaces of the indicated vector spaces ?
(a) $S=\left\{(x, y, z) / x-2 y=z-\frac{3 y}{2}\right\}, V=R^{3}$
(b) $S=\{p \in P / \operatorname{deg} p \leq 4 \& p(0)=2\}, V=P$

7 Let V be P_{1}, the vector space of all polynomials of degree ≤ 1, and let $S=\left\{v_{1}, v_{2}\right\}$ and $T=\left\{w_{1}, w_{2}\right\}$ be bases for P_{1}, where $v_{1}=t$, $v_{2}=1, w_{1}=t+1, w_{2}=t-1$. Let $v=p(t)=5 t-2$. Compute $[v]_{s}$ and $[v]_{T}$.
8. Let $L: P_{2} \rightarrow P_{2}$ be a linear transformation for which $L(1)=1, L(t)=t^{2}$, and $L\left(t^{2}\right)=t^{3}+t$.
Compute $L\left(2 t^{2}-5 t+3\right)$ and $L\left(a t^{2}+b t+c\right)$

