BITS, PILANI-DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

FIRST YEAR - SEMESTER-II (2007-08)

MATHEMATICS-II (MATH C192)

COMPREHENSIVE EXAMINATION (CLOSED BOOK)

Date: 02.06.2008	Max. Marks: 120
Time: 3 hours	Weightage: 40 %

Answer all the questions.

Answer Part A, Part B and Part C in separate Answer Books.

<u>Part-A</u>

1. Test for consistency of the following linear system of equations and if so solve completely x + y + 2z = -1, x - 2y + z = -5, 3x + y + z = 3. (10)

2. Verify whether the following set of vectors in R^4 is linearly dependent. If it is so, express one vector as a linear combination of rest

$$\{(1,1,2,10),(1,0,0,2),(4,6,8,6),(0,3,2,1)\}.$$
 (10)

3. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by L(x, y, z) = (x - y, x + 2y, z). Find ker L, range L and verify Rank-Nullity theorem. (10)

4. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by L(x, y, z) = (x + 2y + z, 2x - y, 2y + z). Let S be the natural basis for \mathbb{R}^3 and let $T = \{(1, 0, 1), (0, 1, 1), (0, 0, 1)\}$ be another basis for \mathbb{R}^3 . Find the matrix of L with respect to S and T. (10)

Part- B

(10)

7. Show that the function $f(z) = z^2 e^{-z}$ is entire and hence find its derivative.

8. Show that
$$Log(1+i)^2 = 2 Log(1+i)$$
 but $Log(-1+i)^2 \neq 2 Log(-1+i)$. (10)

Part-C

9. Evaluate $\int_{C} f(z)dz$ where f(z) is defined by the equations $f(z) = \begin{cases} 1, \text{ when } y < 0 \\ 4y, \text{ when } y > 0 \end{cases}$ and *C* is the arc from z = -1 - i to z = 1 + i along the curve $y = x^{3}$. (8)

10. Find the Laurent's series that represents the function $f(z) = \frac{z+2}{z^2-5z+6}$ in the domain 0 < |z-2| < 1

(8)

(8)

11 Evaluate the integral $\int_{C} \tan z \, dz$, where *C* the positively oriented circle |z| = 2.

- 12. Use residues to evaluate the improper integral $\int_{0}^{\infty} \frac{dx}{(x^{2}+1)^{2}}$ (8)
- 13. Use residues to evaluate the definite integral $\int_{-\pi}^{+\pi} \frac{d\theta}{1+\sin^2\theta}$ (8)

BITS-PILANI, DUBAI First Year-Semester-II (2007-08)

MATHEMATICS-II (MATH UC192)

Test-2 (Open Book)

Time: 50 Minutes	Marks:60	Weightage: 20%	8 th May, 2008

NOTE: 1.Only the Prescribed Text books and Class Notes are allowed, 2. Answer the questions in serial order.

1. Determine the eigenvalues and eigenvectors of A^{-1} if $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$ (10)

2. If $f(z) = \frac{x^3 y(y - ix)}{x^6 + y^2}, z \neq 0$, show that the Cauchy-Riemann equations are satisfied at 0, z = 0

(10)

the origin but f'(0) does not exist.

3. Find all the roots of
$$(-8 - i8\sqrt{3})^{\frac{1}{4}}$$
 and exhibit them geometrically. (8)

•

- 4. Find the real and imaginary parts of Log[(1+i)Log i] (8)
- 5. Find the constants a, b, c such that the function

$$f(z) = -x^{2} + xy + y^{2} + i(ax^{2} + bxy + cy^{2})$$

is analytic. Express $f(z)$ in terms of z. (8)

6. Evaluate the integral $\int_{C} \operatorname{Re}(z^2) dz$ from 0 to 2+4*i* along the (i) x-axis from 0 to 2, and then vertically to 2+4*i*, (ii) Parabola $y = x^2$. (8)

7. Show that the function $u(r,\theta) = r^2 \cos 2\theta$ is harmonic. Find the conjugate harmonic function and the corresponding analytic function f(z). (8)

BITS-PILANI, DUBAI First Year-Semester-II (2007-08)

MATHEMATICS-II (MATH UC192) Test-I (Closed Book)

TIME: 50	Minutes Marks: 75	Weightage:25%	30.03.2008
1.	Find an equation relating a, b ,	<i>c</i> , so that the linear system	
	$x+2y-3z=a,\ 2x+3y$	$y+3z=b,\ 5x+9y-6z=c$	
	is consistent for any values of a	a, b and c that satisfy the equat	tions. (9)
2	Find the inverse of the following	g matrix using Gauss Jordan pi	rocedure:
	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$		(9)
3.	Let $S = \{v_1, v_2, v_3, v_4, v_5\}$, where	$v_1 = (1, 1, 0, -1), v_2 = (0, 1, 2, 1), v_3$	$a_3 = (1, 0, 1, -1)$
	$v_4 = (1, 1, -6, -3)$ and $v_5 = (-1, -6, -3)$	-5,1,0). Find a basis for the sul	bspace
	$W = \operatorname{span} S \operatorname{of} R^4$. What is dim	W?	(10)
4	Let $S = \{x^3 + 2, x^2 + 2x + 1, x^3 + 1, x^3 + 1, x^3 + 1, x^3 + 1, x^$	$x^{2}-x+2, -x^{3}+x^{2}-5x+2$	Check whether
	S spans P ₃ .		(9)
5.	Check whether the set $S =$	{(1, 1, 2, 1), (1, 1, 1, 0), (1, 0, 0, 2)), (0, 3, 2, 1)} is
	linearly independent in R^4 ?		(9)
6.	Which of the following are subs	paces of the indicated vector s	paces ?
	(a) $S = \left\{ (x, y, z) \middle x - 2y = z \right\}$	$-\frac{3y}{2}$, $V = R^3$	
	(b) $S = \{ p \in P / \deg p \le 4 \&$	p(0) = 2, $V = P$	(10)
7	Let V be P_1 , the vector spa	ce of all polynomials of degre	ee ≤ 1 , and let
	$S = \{v_1, v_2\}$ and $T = \{w_1, v_2\}$	$\{v_2\}$ be bases for P_1 ,	where $v_1 = t$,
	$v_2 = 1, w_1 = t + 1, w_2 = t - 1$. Let	$v = p(t) = 5t - 2$. Compute $[v]_s$	and[v] _T . (10)
8.	Let $L: P_2 \rightarrow P_2$ be	a linear transformation	for which
	$L(1) = 1, L(t) = t^{2}, \text{ and } L(t^{2}) =$ Compute $L(2t^{2} - 5t + 3)$ and L	$= \iota + \iota.$ $L(at^2 + bt + c)$	(10)