BITS, PILANI-DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2005-2006

ES UC112 THERMODYNAMICS COMPREHENSIVE EXAM

DATE: 25-05-06

DURATION: 3 hrs MAXIMUM MARKS: 40 WEIGHTAGE: 40%

Notes: Thermodynamic tables are allowed.

Highlight all your answers by enclosing in boxes. Assume any missing data suitably and mention the same at the appropriate place in your answer. All the parts of the same question should be answered together.

1. a. A room is heated by an Iron that is left plugged in. If the plug is outside the room, answer the following by considering the entire room including the Iron as the system Is there any energy transfer to or from the surroundings?

If there is an energy interaction, is that heat or work

1M

b. With suitable explanation, elaborate the following statement. "Air can be considered as pure substance only in certain situations"

c. A piston cylinder device initially contains 0.05 m³ of a gas initially at 200 kPa. At this state, a spring that has a spring constant of 150kN/m is touching the piston but exerting no force on it. Now heat is transferred to the gas, causing the piston to rise and compress the spring until the volume inside the cylinder is doubled. The cross sectional area of the piston is 0.25 m². Answer the following

Represent the process on p-v diagram.

Calculate the final pressure inside the tank.

Calculate the total work done by the gas.

Calculate the fraction of the total work done against the spring to compress it.

Clearly write all the assumptions that you have made for the analysis.

5M

Reproduce the following table in your answer sheet. Fill up the blanks with appropriate answers and underline your answers. Cells with # symbol need not be answered.

Substance	T	P	v	u	h	S	Quality	Phase
	(°C)	(Mpa)	(m ³ /kg)	kJ/kg	kJ/kg	kJ/kg K		
Water	200			#		6	#	#
Water	-20		1100		#		#	
R12		0.05			#	0.9949	#	#
R22	-5		0.0005	#			#	

- 3. a. State and explain I law of thermodynamics for a process and a cycle.
 b. Superheated refrigerant R-134a at 20°C, 0.5 MPa is cooled in a piston/cylinder arrangement at constant temperature to a final two-phase state with quality of 50%. The refrigerant mass is 5 kg, and during this process 500 kJ of heat is removed. Find the initial and final volumes and the necessary work.
 5M
- 4. a. Two steady flows of air enters a control volume. One is 0.025 kg/s flow at 350 kPa, 250°C, state 1, and the other enters at 450 kPa, 15°C, state 2, both flows with low velocity. A single flow of air exits at 100 kPa, -40°C, state 3. The control volume rejects 1 kW heat to the surroundings and produces 4 kW of power. Neglect kinetic energies and determine the mass flow rate at state 2. Use constant specific heats for air.
 - b. State the two Carnot propositions.

2M

- 5. a. Entropy is a property Prove this using reversible paths.
 b. In an air compressor air enters at 100 kPa and 30°C, and compressed to a pressure of 1 MPa in a reversible adiabatic process. Determine the specific work required and exit temperature of air.
- a. Derive in expression for change in entropy of an ideal gas in terms of pressure & temp ratios and temp & volume ratios.
 - b. Change in entropy ds $\geq \left[\frac{\delta Q}{T}\right]_{irr}$, prove this relationship using reversible and

irreversible paths.

2M

d. None of the above

4.

Select Incorrect statement relating to Carnot cycle

a. There are two reversible adiabatic processesb. There are two reversible Isothermal processes

c. Work is produced in all the processes

BITS, PILANI-DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2005-2006

ES UC112 THERMODYNAMICS QUIZ I1 DATE: 09-05-06

DURATION: 30 MINUTES MAXIMUM MARKS: 20 WEIGHTAGE: 10%

Answe	rs								
	either a,b					ange of au	iswer ar	nd overwr	iting is
1	2	3	4	5	6	7	8	9	10
· · · · · · · · · · · · · · · · · · ·									<u> </u>
11	12	13	14	15	1 16	1			,
	12	13	14	15	16	17	18	19	20
t	o. Only fo	onstant proor constant or constant or constant he above	t volume	processes	esses				
a b c	ne approa	ich to be i state stead n state Ui flow	ollowed in the state of the sta	s to consi	be analys der	ed by usin	g Therm	odynamic	princip
a b	carnot cy It estable It opera	lishes low tes betwe	er limit o en two re	n cycle ef servoirs	ficiency				

		d. If the cycl	ie is reversed it ca	n act as a refrige	erator		
	5.	Throttling of	a liquid is a const				
	٠.	a. Pressure p	a inquiu is a const	ant			
		b. Volume p			•		
		c. Enthalpy					* 4*
		d. None of the	process				
		d. None of the	ie above				
	6.	A heat engine	is operating betw	een the temperat	tures of 126.	85 °C and 26.85	°C. What is
		the Carnot eff	iciency of the hea	t engine?			
		a. 0.25 %	b. 25 %	c.7	5 %	d. 0.75 %	ı
	7.	greater than 1.	carnot engines A 2, subsequently the rature of engine I	e source temper	ature for end	eratures T1 and Tine A increases b	Γ2 with T1 by ΔT and
		a efficiency	of engine A will b	ecome more			
		b. engine B w	vill become more	efficient			
		c. both the en	gines will have th	e same efficienc	y		
		d. the relative going to be	magnitude of T1 more efficient.	, T2 and ΔT will	determine v	which of the two	engines is
	8.	A perfect gas e expansion proc	nclosed in a pisto ess. Consider the	n cylinder arrang following stater	gement exec ments	utes a reversible	adiabatic
		 entropy will entropy chan of these statem 	ge of the surrour	2. entropy of dings will be zero	change will ro	be zero	
		a 1 and 3 are o					
				b. 2 alone is	s correct		
		c. 2 and 3 are c	correct d. 1 alone	is correct			
	9.	between the san	e carnot heat pune temperature re	mp is 2. The eff servoirs will be	ficiency of	the carnot engine	e operating
		a.25%	b.50%	c.75	%	d.20%	
	10.	Pickup the wron	ig statement				
*	a.	The efficiency	of a reversible	engine is indon-	andant cf.4		
		substance under	oning a cycle	ongine is indepe	endent of th	ne amount of th	e working
	b.	The efficiency	of the reversible	anoina ia inda			
	•	The efficiency working substan	or me reversion	engine is inde	pendent of	the nature and t	ype of the
	C	The efficiency	of all reversible s				
	٠.	The efficiency of the same.	or are reversible e	ingines working	between the	e same temp lim	its will be
	đ		cornet best	'11 1 1 1			
	u.	The COPof the operating between	en the same two t	mp will be hig emp limits.	her than th	e a reversible h	eat pump
	11.	A closed exetem	undergoes a secol	io 1 •	1. 1		
		heat supplied to	undergoes a cycl	ic process 1-a-2	-0-1. During	the process 1-2	via a, the
		During the proce	the system is 500	vetem rejects 200	ciii does an	amount of 250k.	ot work.
		process 2-1 via b	ess 2-1 via b the s	arem rejects 300	UKJ OI neat	ine work done	during the
		a. 50 kJ.	b.100 kJ	c50 kJ	d .	-100 kJ	
					·		

12.	The is ve	velocity of a ery small and	fluid leaving the if the enthalpy of	horizontal adia the fluid decre	abatic nozzle if eases by 5 kJ.	the velocity of approac
	a.	100m/s	b. 1000m/s	C.	3.16m/s	d.10m/s
13.	1. C are o 2. T	OP of the heap operating between the classical st	owing statements at pump is always ween the same two atements of secon maximum for a re	temperature l d law are equi	imits) valent	rigerator plus unity (bot
	a.	of these states all are corr correct.		2 are correct	c. 2 an	d 3 is correct d. 1 an
14.	1. Er 2. Er	ntropy of the value of the valu	wing statements world tend toward copy of the universelosed system can	se is always co	onserved eat removal	
	1 and	e above state l 2 are correct e statements a	b. 1 and 3 is c	orrect	c. both one	and two are wrong d
15.	neat a	and 2000kJ of 00 kJ, the init	t work is done on ial internal energy	the system. If	the final inter	ystem rejects 1000 kJ o nal energy of the system
16.	A roo pump a.750	with a COP	vith a 1500 W elector 2.0 is used instead b. 1500 W	etric heater. Head?		r can be saved if a heat
17.	engine	e driving an e ency be to hav	can produce electrolectric generator of the same overal b.18.75 %	f efficiency 8	0% What shou	ompare that to a heat ald be the heat engine ? d.15 %
18.	Chose a. b. c. d.	A small ror A small cup	of cold water mixture of a pure		eled as thermal	reservoir
19.	When a. b. c. d.	Velocity inc Pressure inc	sing through a diff reases at the exper reases at the exper y and pressure incommon above	nse of pressure use of velocity	•	
20.	pressur	of the device re in a steam paperssor	which is used to in power plant is. b. Pump	ncrease the pro	essure of liquid d. Diff	
				- I TOBLEY	u. Diii	usul

A

BITS, PILANI-DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2005-2006

ES UC112 THERMODYNAMICS QUIZ 1 DATE: 28-03-06

DURATION: 30 MINUTES MAXIMUM MARKS: 20 WEIGHTAGE: 10%

Nai	me of the student: Id.:
1.	Which of the following is not a intensive property a. specific volume b. temperature c. Total internal energy d.
	specific enthalpy
2.	Consider the following statements about critical point of pure substance
	i. latent heat is zero
	ii. liquid is denser than its vapor
	iii. liquefaction is not possible above the critical temperature
	Identify the correct statements using the codes given below:
	a. i, ii and iii b. i and ii c. ii and iii d. i and iii
3.	Identify the false statement in the context of heat and work
	a. they exist only during interaction between the system and the boundary
	b. are path functions and exact differential
	c. may or may not occur simultaneously
	d. occur due to some unbalanced potential which tends to promote a change of state.
4.	In case of power failure, a battery is used to light a bulb, run a fan and heat an electric
	iron (each of 100 W rating) for 10 minutes. In this operation, the work done W and heat
	supplied Q by the battery are
	a. W=0, Q=0 b. W=180 kJ, Q=0
	c. W=60 kJ, $Q = 120 \text{ kJ}$ d. none of the above.
5.	An insulated rigid vessel contains some gas and an electric resistor, in certain interval of

time, the resistance connected to an external electric power heats the gas. Considering

the vessel and its contents as the system

- a. heat and work transfer are zero
- b. heat and work transfer are positive
- c. heat transfer is zero and work transfer is negative
- d. heat transfer is positive and work transfer is zero.
- 6. Mark the statement/ formulation which is wrong:
 - a. 1st law is applicable to any process happening in the world
 - duartz clock works continuously and thus constitutes a perpetual motion machine of first kind (a machine which will produce continuous amount of work output with out any energy input)
 - $c. \quad \oint \! \delta Q = \oint \! \delta W$
 - d. (δQ - δW) is an exact differential even though δQ and δW are inexact differential
- An ideal gas is made to go from state A to state B in the following two different ways: an isobaric and then an isochoric process an isochoric and then an isobaric process

 The work done by the gas in two cases is W1 and W2 respectively then,
 - a. W1 = W2 b. W1>W2 c. W1<W2 d. $W1 = \frac{1}{4}W2$
- Which parameter can be considered to remain constant during a process if the value of exponent n in the polytropic equation pvⁿ = constant takes a unit value for an ideal gas?
 a. enthalpy
 b. entropy
 c. internal energy
 d. pressure or volume
- 9. A container with rigid non-conducting walls holds AIR and AIR is heated by means of electric heater. Considering air as the system which of the following statement is correct?
 - a. The system is closed and the heat transfer and work transfers are both positive.
 - b. The system is open and the heat transfer is zero and the work transfer is negative.
 - c. The system is closed and the heat transfer is zero and work transfer is negative.
 - d. The system is closed and the heat transfer and work transfers are both negative.
- 10. Which of the following statement is incorrect with respect to a pure substance?
 - a. It can have different specific volumes at critical point pressure and temperature
 - b. It can have different specific volumes at triple point pressure and temperature
 - When the pressure is less than the triple point pressures it directly sublimates from solid to vapor state.
 - d. Most of the substances contract on freezing except water.

11.	Which chart?		following	statement is in	correct wit	th respect to	gases and	d compressibili	ty
	chart								
	a .	at low equati		and very high (emperatur	es most of t	he gases of	bey the ideal g	as
	b.	genera	alized comp	ressibility char	t can be us	ed for any g	gas at any s	tate	
	C.	for ide	eal gas the c	ompressibility	factor is al	lways equal	to one.		
	d.			compressibility		•			
12.	A tan	k conta	ining a flui	d is stirred by	a paddle	wheel. The	work inp	ut to the padd	le
								e fluid inside th	
				change in inter				nuia msiac u	
	a.	4500	b.	7500	c.	-4500		7500	
	•	1500	U.	7500	C.	-4300	d.	-7500	
13.	Which	one of	the following	ng statement is	correct res	earding inte	rnal enerov	19 -	
	a.			of internal ene		_	indi circigy	•	
	b.			of the ideal g			ropuro and	mannum	
	С.			n and property			rature and	pressure only.	
					•				
	d.				change in	internal ener	rgy for an i	ideal gas will b	е
		some t	imes not eq	ual to zero.					
14.	For a s	gas, woi	k done in a	ے n isobaric expa	nsion proc	ess is 1200	I The init	ial volume is 1	ሰ
								final volume a	
	0.5.			- probbare in p	usoui. I un	, uio ratio o	i iiitiai to	illai volullie a	.>
	a. 120		b. 1200	c. 480	d. 120	00			
			0. 1200	C . 100	u. 120	00			
15.	In a co	nstant v	olume proc	ess, the polytro	pic index	'n' is equal	to		
	a. 0		b. 1	c. 1.3 d. ±		•			
16.	A body	with u	nit mass is i	moving in a ho	rizontal di	rection. The	velocity a	t position 1 and	t
	2 are 1	0 m/s a	nd 20 m/s r	espectively. W	hat is the	net change	in kinetic (energy between	n
	J.	positio				J			
	a. 150	kJ	b. 1500 J	c. 0.150 kJ	d. 1500	0 kJ			
17.	Enthalp	y can b	e calculated	using the follo	owing form	ıula.			
	a. h≡ u	+ PV	b. h	$\equiv \mathbf{u} + \mathbf{p}_{\mathbf{V}}$	c. H ≡	u + PV d. h	= U + Pv		

	at atmac			ed to conve		water in	to steam a	it constant	temperat
		pheric pro 03 kJ/kg	essure is	b. 419.0)2 kI/ka		- 20		
•		02 kJ/kg		0. 417.0	/2 NJ/Ng		C. 26	76.05 kJ/k	g
19.	in a heat	ransfer a	nalysis o	n a metal	plate wh	ich sepa	rates atm	osphere a	and room
ŧ	mount of	heat trans	ferred thr	ough	_ is equal	to the ar	mount of	heat transf	erred thro
-	As	sume hea	t loss thro	ough radiat	ion as zer	O .			
. 9	Convecti	an radiati	on boa						
	I none of t			nduction, r	adiation	C. CC	onduction	, convecti	on
		40076.							
20. P	ick up the	correct st	atement n	egarding tl	ne radiatio	n haet t-	ana Cau		
a	. It can tak	e place w	ith out th	e presence	of any me	n near tr edium	ansier		
	. It always				or any mic	Aiuiii			
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			ot require	a substan	ice			
			and the second s						
d	. emissivit		high for I	nighly polis	shed surfa	ces.			
d Answe Write	emissivit	y is very	in the sp	nighly polis Pace provi	ded. Cha		answer a	nd overw	riting is 1
d Answe Write	emissivit	y is very	in the sp	pace provi	ded. Cha		answer a	nd overw	riting is 1
d Answe Write ermit	emissiviters either a,t	y is very	in the sp	pace provi	ded Cha	nge of a			
d Answe Write ermit	emissiviters either a,t	y is very	in the sp	pace provi	ded Cha	nge of a			
d Answe Write ermit	emissiviters either a,t	y is very	in the sp	pace provi	ded Cha	nge of a			
d Answe Write ermit	emissivit ers either a,t ted, so be s	y is very	in the specific entering	pace provi	ded. Charver)	nge of a	8	9	10
d Answe Write ermit	emissivit ers either a,t ted, so be s	y is very	in the specific entering	pace provi	ded. Charver)	nge of a	8	9	10
d Answe Write ermit	emissivit ers either a,t ted, so be s	y is very	in the specific entering	pace provi	ded. Charver)	nge of a	8	9	10

BITS, PILANI-DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2005-2006

ES UC112 THERMODYNAMICS TEST 2

DATE: 16-04-06

DURATION: 50 MINUTES MAXIMUM MARKS: 50 WEIGHTAGE: 20%

Note: Open book test (Fundamentals of thermodynamics by Van Wylen and thermodynamic tables are allowed Class notes are not allowed.)

- 1. A gas of mass 1.5 kg undergoes a quasistatic process which follows the relation $\mathbf{p} = \mathbf{a} + \mathbf{b} * \mathbf{v}$, where a and b are constants. The initial and final pressures are 1000 kPa and 200 kPa respectively and the corresponding volumes are 0.2 m³ and 1.2 m³. The specific internal energy of the gas is given by the relation $\mathbf{u} = 1.5 \, \mathbf{p*v} 85 \, \mathbf{kJ/kg}$, where p is in kPa and v is in m³/kg.calculate the net heat transfer and the maximum internal energy of the gas attained during the process.
- 2. For a certain experiment, R-22 vapor is contained in a sealed glass tube at 20°C. It is desired to know the pressure at this condition, but there is no means of measuring it, since the tube is sealed. However, if the tube is cooled to -20°C small droplets of liquid are observed on the glass walls. What is the initial pressure? Explain the process using P-v diagram.
- 3. State the I law equation for a control volume for a steady flow process and deduce the steady flow equations as applicable to a steam nozzle and a rotary compressor.

 6
- 4. Liquid water at 180°C, 2000 kPa is throttled into a flash evaporator chamber having a pressure of 500 kPa. Neglect any change in the kinetic energy. What is the fraction of liquid and vapor in the chamber?
- 5. Two flows are mixed to form a single flow. Flow at state 1 is 1.5 kg/s of water at 400 kPa and 200°C and flow at state 2 is at 5000 kPa and 100°C. Which mass flow rate at state 2 will produce an exit T3=150°C if the exit pressure is kept at 300 kPa.

BITS, PILANI – DUBAI CAMPUS, KNOWLEDGE VILLAGE, DUBAI SECOND SEMESTER 2005 – 2006

ESC U C112 THERMODYNAMICS TEST 1 Date: 05/03/06 DURATION: 50 MINUTES MAXIMUM MARKS: 20 WEIGHTAGE: 20%

NOTES:

- 1. Standard Thermodynamics tables are allowed.
- 2. Highlight all your answers by enclosing in boxes.
- 3. Assume any missing data suitably and mention the same at appropriate place in your answer.
- 4. All the parts of a particular question should be answered together.
- 1 Identify the following properties as Intensive or Extensive:

2

- a. specific volume
- b. temperature
- c. density
- d. surface area
- 2 A 5 m³ container is filled with 900 kg of granite (density 2400 kg/m³) and the rest of the volume is air with density equal to 1.15 kg/ m³. Find the mass of air and the overall (average) specific volume.
- 3 Reproduce the following table in your answer sheet. Fill up the blanks with appropriate answers. Underline your answers.

Name of	Temperature	Pressure	Charifia	T -	· · · · · · · · · · · · · · · · · · ·	-
the substance	(°C)	(kPa)	Specific Volume (m³/kg)	Quality	Phase	12
H₂O	212.42	-	-	1	· -	
R 134a	65	-	0.00899	-	-	
NH ₃	-	10,000	0.02076	-		
H₂O	230	10,000	-	_	-	

- 4 Plot T-v and P-v diagrams for R 22 moving from compressed liquid phase to superheated vapour phase, clearly representing
 - a. Constant pressure lines on T-v diagram; constant temperature lines on P-v diagram
 - b. All possible single phase and two phase regions.