Knowledge Village, DUBAI

I - Year - SEMESTER - II (2004-05)

MATHEMATICS - II (MATH UC 192)

Test - I (Closed-Book)

Time: 50 Minutes March 13, 2005

Max. Marks: 20

Weighage: 20 %

Note: Answer all four questions in serial order.

1. Determine whether the following system of linear equations is consistent? If consistent, solve the system completely.

$$2x_1 + x_3 - x_4 + x_5 = 2$$
$$x_1 + x_3 - x_4 + x_5 = 1$$
$$12x_1 + 2x_2 + 8x_3 + 2x_5 = 12$$

(5)

2. (a) Which of the following sets are subspaces? Justify.

$$(i) \quad S = \{ f \in \mathcal{C}[a,b] \mid f(x) = \sqrt{2} \}$$

(ii)
$$S = \{(x_1, x_2, x_3) \in V_3 \mid x_3 \text{ is integer}\}$$

- (b) Let $S = \{x^3, x^2 + 2x, x^2 + 2, 1 x\}$. Determine whether the polynomial $x^3 \frac{3}{2}x^2 + \frac{x}{2} \in [S]$. (3+2)
- 3. (a) Find a basis and dimension for a subspace

$$U = \{ p \in \mathcal{P}_3 \mid p(1) = 0 \text{ and } p'(1) = 0 \}$$

of \mathcal{P}_3

- (b) Find the coordinate vector of (2, 3, 4, -1) relative to the ordered basis $B = \{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)(1, 0, 0, 0)\}$ for V_4 . (3+2)
- 4. (a) If a set is linearly dependent, then prove that any superset of it is also linearly dependent.
 - (b) Determine whether

$$S = \{1, x, x(1-x), x(x-1)(x-2)\}$$
 forms a basis for \mathcal{P}_3 . (3+2)

Knowledge Village, DUBAI

I - Year - SEMESTER - II (2004-05)

MATHEMATICS - II (MATH UC 192)

Test - II (Open-Book)

Time: 50 Minutes

Max. Marks: 20

Weighage: 20 %

April 24, 2005

Note: 1. Answer all four questions in serial order. 2. The textbooks and class-notes are

1. (a) Find the matrix for the linear transformation $T: V_3 \to V_2$, such that, T(x, y, z) = (2x + y - z, 3x - 2y + 4z)relative to the bases

$$B_1 = \{(1,1,1), (1,1,0), (1,0,0)\}, B_2 = \{(1,3), (1,4)\}.$$

- (b) Show that $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and A^T have the same eigenvalues, but different eigenvectors for an eigenvalue. (2.5+2.5)
- 2. (a) Find the square root of 3i and express in the cartesian form.
 - (b) Sketch the region $|z-1+2i| \le 1$ and state whether it is a domain.

(c) Find Arg(z) if
$$z = -1 - \sqrt{3}i$$
 (2+2+1)

- 3. (a) Is $f(z) = \sqrt{|xy|}$ differentiable at (0,0)? Justify.
 - (b) Let

$$f(z) = \begin{cases} \frac{(1+i)x^3 - (1-i)y^3}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$
(1)

Are Cauchy-Riemann equations satisfied at (0,0)? Justify.

(2+3)

4. (a) Locate the singularities of the function:

$$f(z) = \frac{\tan z}{z^3 + 1}.$$

(b) Determine whether the function $u(x,y) = \log \sqrt{x^2 + y^2}$ harmonic. If so, find an analytic function f(z) = u + iv.

Knowledge Village, DUBAI

I - Year - SEMESTER - II MATHEMATICS - II (MATH UC 192) QUIZ II - (Closed-Book)

Time: 30 Minutes

Dated: April 12, 2005

Max. Marks: 10

ID No:

Section No:

Name:

Note: (1) Write ID No., Name, Sec. No. and Answer in the space provided. (2) Overwriting will be treated as wrong answer.

- 1. Let $T: V_3 \to V_3$ be a linear map given by $T(x_1, x_2, x_3) = (x_1 + x_3, x_1 x_3, x_2)$, then $T^{-1}(y_1, y_2, y_3) = \dots$
- 3. (a) A linear transformation T is invertible if and only if
 - (b) Every linear map $T: V_3 \to V_2$ has inverse. State True or False.

- 7. If eigenvalues of an invertible matrix A are 1, -2, 2, then (a) the eigenvalues of A^{-1} are
 - (b) the eigenvalues of the fifth power of A are
- 8. The all possible values of $\sqrt[4]{1}$ are
- 9. (a) What does |z-i| < i represent?
 - (b) Is z=i an accumulation point of the set |z|<1 (Yes/No)
- 10. State true/false with reasons: (a) 3 + 2i > 1 + i.....
 - (b) The annulus $1 \le z < 2$ a domain.

Knowledge Village, DUBAI

I - Year - SEMESTER - II MATHEMATICS - II (MATH UC 192) QUIZ II - (Closed-Book)

		~ 	
Time: 30 Minutes	Dated: April 12,	2005	Max. Marks: 10
ID No:	Section No:	Name:	
Note: (1) Write ID No., Na	me, Sec. No. and Answ	er in the space p	rovided (2) Overwrit
ing will be treated as wron			vided. (2) Overwin-
1. If eigenvalues of an in	\mathbf{v} ertible matrix A are 1,	-2, 2, then (a) t	he eigenvalues of A^{-1}
are			
(b) the eigenvalues of	the fifth power of A are	••••••	
2. The all possible values	s of $\sqrt[4]{1}$ are		
3. (a) What does $ z-i $	< i represent?		
the state of the s	ulation point of the set		************
4. (a) A linear transform	ation T is invertible if ${f a}$	nd only if	
	$T: V_3 \rightarrow V_2$ has inverse.		
5. Given that $A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -1 & 2 \\ 1 & 0 \end{pmatrix}$. A linear tra	nsformation T :	$V_3 \rightarrow V_2$ such that
$A = (T : B_1, B_2)$, wher	e B_{1} and B_{2} are standar	d bases for V_3 ar	nd V_2 respectively, is

- 8. State true/false with reasons: (a) 3 + 2i > 1 + i.....
 - (b) The annulus $1 \le z < 2$ a domain.
- 9. Let $T: V_3 \to V_3$ be a linear map given by $T(x_1, x_2, x_3) = (x_1 + x_3, x_1 x_3, x_2)$, then $T^{-1}(y_1, y_2, y_3) = \dots$

Knowledge village, DUBAI First Year - Semester-II (2004-05)

MATHEMATICS-II (MATH UC192)

QUIZ - I (CLOSED BOOK)

Time: 30 Minutes
Date: March 22, 2005

Max.Marks: 10

Name:

ID No.:

Section:

N.B: All questions carry equal marks. Overwriting will be treated as wrong answer.

1.
$$[\{(-2, 0), (0, 5)\}] =$$

2.
$$[\{1, x, x^2\}] =$$

3. Is the set
$$S = \{t, t^2, e^{2t}\}$$
 in $C(-\infty, \infty)$ linearly independent?

4. Is the set
$$\{(0,0,1), (1,0,1), (1,-1,1), (3,0,1)\}$$
 linearly independent? -----

5. If
$$U = \{(x, y, z) \in V_3 \mid x + y + z = 0\}$$
, then $\dim U = ----$

6. If
$$U$$
 and W are subspaces of a finite dimensional vector space V with their intersection as the zero subspace of V , then $\dim(U+W)=\dim U+\dim W$. State True or False?

7.
$$[(1,-2,1), (2,1,5)] = [[(1,-2,1), (2,1,5)]]$$
. State True or False?-----

8. If
$$V$$
 has a basis of 10 vectors, then any set of 12 vectors in V is linearly independent. State True or False? -----

9. If U and W are two subspaces of a vector space V. Then U+W is a subspace of V containing both U and W. State True or False? ------

- 10. Can the set $S = \{x^2 4, x + 2, x 2, \frac{x^2}{3}\}$ form a basis for P_2 ?
- 11. A linear transformation T is completely determined by its values on the elements of a basis. State True or False? ------
- 12. Let U be a vector space, then a linear map $T: U \to U$ is called -----
- 13. Let $T: U \to V$ be a linear map, then N(T) is a subspace of V. State True or False?
- 14. Let $T: U \to V$ be a linear map, then $T(0_U) = \cdots$
- 15. The nullity of a linear map $T: U \to V$ is defined as -----
- 16. The range of a linear map $T: U \to V$ is defined as -----
- 18. Let $T: P \to P$ be a map defined by T(p)(x) = xp(x) + p(1), then $T(0)(x) = \cdots$
- 19. Let $T: V_2 \to V_2$ be a linear map defined by $T(e_1) = e_1 e_2$, $T(e_2) = e_1 + e_2$ then $T(x_1, x_2) = -----$.
- 20. Let $T: P \to P$ be defined by $T(p)(x) = 2 + 3x + 7x^2p(x)$. Is this map linear?

Knowledge village, DUBAI

First Year - Semester-II (2004-05)

MATHEMATICS-II (MATH UC192)

QUIZ-I (CLOSED BOOK)

Time: 30 Minutes Date: March 22, 2005

Max.Marks: 10

Name:

ID No.:

Section:

N.B: All questions carry equal marks. Overwriting will be treated as wrong answer.

- 1. If $U = \{(x, y, z) \in V_3 \mid x + y + z = 0\}$, then $\dim U = ----$
- 2. Is the set $\{(0,0,1), (1,0,1), (1,-1,1), (3,0,1)\}$ linearly independent?
- 3. If U and W are subspaces of a finite dimensional vector space V with their intersection as the zero subspace of V, then $\dim(U+W)=\dim U+\dim W$. State True or False? ------
- 4. $[\{(-2, 0), (0, 5)\}] =$ -----
- 5. $[\{1, x, x^2\}] =$
- 6. [(1,-2,1), (2,1,5)] = [[(1,-2,1), (2,1,5)]]. State True or False?-----
- 7. If V has a basis of 10 vectors, then any set of 12 vectors in V is linearly independent. State True or False? -----
- 8. Is the set $S = \{t, t^2, e^{2t}\}$ in $C(-\infty, \infty)$ linearly independent?
- 9. If U and W are two subspaces of a vector space V. Then U+W is a subspace of V containing both U and W. State True or False? ------

- 10. Can the set $S = \{x^2 4, x + 2, x 2, \frac{x^2}{3}\}$ form a basis for P_2 ?
- 11. Let U be a vector space, then a linear map $T: U \to U$ is called -----...
- 12. Let $T: U \to V$ be a linear map, then $T(0_U) = ----$
- 13. The nullity of a linear map $T: U \to V$ is defined as -----
- 15. Let $T: P \to P$ be a map defined by T(p)(x) = xp(x) + p(1), then T(0)(x) = ----
- 16. Let $T: V_2 \to V_2$ be a linear map defined by $T(e_1) = e_1 e_2$, $T(e_2) = e_1 + e_2$ then $T(x_1, x_2) = ----$.
- 17. Let $T: P \to P$ be defined by $T(p)(x) = 2 + 3x + 7x^2 p(x)$. Is this map linear?
- 18. A linear transformation T is completely determined by its values on the elements of a basis. State True or False? ------
- 19. Let $T: U \to V$ be a linear map, then N(T) is a subspace of V. State True or False?
- 20. The range of a linear map $T: U \to V$ is defined as ----

Knowledge Village, DUBAI

I - Year - SEMESTER - II (2004-05)

MATHEMATICS - II (MATH UC 192)

COMPREHENSIVE EXAMINATION

(Closed-Book)

Time: 03 Hours

May 24, 2005

Max. Marks: 80

Weighage: 40 %

Note:- 1. All questions are compulsory and should be answered sequentially.

- 2. There are three sections (A, B, and C) in the question paper and should be answered in three separate answer sheets.
- 3. Write A/B/C on the top of each answer sheet in CAPITAL BOLD LETTERS.

SECTION A

1. Determine whether the following system of linear equations is consistent.

$$x_1 - x_2 + 2x_3 + 3x_4 = 1$$

$$2x_1 + 2x_2 + 2x_4 = 1$$

$$4x_1 + x_2 - x_3 - x_4 = 1$$

$$x_1 + 2x_2 + 3x_3 = 1$$

If so, discuss completely the solution.

- (8)
- 2. (a) Is the set $S = \{p \in \mathcal{P} | \text{ degree of } p \leq 3\}$ subspace of vector space \mathcal{P} ? Justify your answer.
 - (b) Show that the set $S = \{\sin x, \sin 2x, \sin 3x, \dots, \sin nx\}$ is a linearly independent subset of $C[-\pi, \pi]$.
- 3. (a) Can the set $S = \{(1, 2, 3), (3, 1, 0), (-2, 1, 3)\}$ form a basis for V_3 ? In case S is not basis for V_3 , determine a basis for [S].
 - (b) Determine the range, kernel, rank and nullity of a linear transformation

 $T: V_3 \to V_4$ such that $T(x_1, x_2, x_3) = (x_1, x_1 + x_2, x_1 + x_2 + x_3, x_3)$. (4+5)

SECTION B

- 1. (a) If λ is an eigenvalue of the matrix, prove that
 - (i) λ is also eigenvalue of A^T .
 - (ii) $1/\lambda$ is an eigenvalue of A^{-1} , if A is nonsingular.
 - (b) Let $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 0 \end{pmatrix}$.

Determine a linear transformation T such that $A = (T : B_1, B_2)$ when

$$B_1 = \{(1, 1, 1), (1, 2, 3), (1, 0, 0),\}$$

$$B_2 = \{(1, 1), (1, -1)\}.$$
(5+5)

- 2. Let a function f(z) be analytic in a domain D. Prove that f(z) is constant in D if
 - (a) f(z) is real valued for all z in D.
 - (b) $\overline{f(z)}$ is analytic in D.

(c)
$$|f(z)|$$
 is constant in D . (6)

- 3. (a) Verify that the function $f(z) = e^{-y} \sin x i e^{-y} \cos x$ is entire.
 - (b) Find the principal value of

$$\left[\frac{e}{2}(-1-\sqrt{3}i)\right]^{3\pi i}.$$

(c) Show that

$$\log(i^2) \neq 2\log i \qquad \text{when } \log z = \ln r + i\theta \ \left(r > 0, \frac{3\pi}{4} < \theta < \frac{11\pi}{4}\right). \tag{3+3+3}$$

SECTION C

1. (a) Evaluate $\int_C f(z)dz$, where f(z) is defined by

$$f(z) = \begin{cases} 1, & y < 0, \\ 4y & y > 0. \end{cases} \tag{1}$$

and C is the arc from z = -1 - i to z = 1 + i along the curve $y = x^3$.

(b) Use antiderivative to show that

$$\int_{-2i}^{2i} \frac{dz}{z} = \pi i,$$

when the path of the integration from -2i to 2i is the right hand half of the circle

(c) Show that if f(z) is analytic within and on simple closed contour C and z_0 is not

$$\int_{C} \frac{f'(z)}{z - z_{0}} dz = \int_{C} \frac{f(z)}{(z - z_{0})^{2}} dz.$$

(5+3+4)

2. (a) Show that the singular point of the following function is a pole.

$$f(z) = \frac{1 - \exp(2z)}{z^4}.$$

Determine the order m of that pole and the corresponding residue B.

(b) Write the two Laurent series in powers of z that represent the function

$$f(z) = \frac{1}{z(z^2+1)}$$

in certain domains, specify domains.

(3+5)

3. (a) Use residues to evaluate the improper integral

$$\int_0^\infty \frac{\cos x}{(x^2+1)^2} dx.$$

(b) Use residues to evaluate

$$\int_0^{2\pi} \frac{d\theta}{1 + a\cos\theta}, \quad \text{wh}$$

where
$$(-1 < a < 1)$$
.

(5+5)

Knowledge Village, DUBAI

I - Year - SEMESTER - II (2004-05)

MATHEMATICS - II (MATH UC 192)

COMPREHENSIVE EXAMINATION

(Closed-Book)

MAKE-UP

Time: 03 Hours

Date: , 2005

Max. Marks: 80

Weighage: 40 %

Note:- 1. All questions are compulsory and should be answered sequentially.

- 2. There are three sections (A, B, and C) in the question paper and should be answered in three separate answer sheets.
- 3. Write A/B/C on the top of each answer sheet in CAPITAL BOLD LETTERS.

SECTION A

1. Determine whether the following system of linear equations is consistent.

$$2x_1 + x_2 + x_3 + x_4 = 2$$

$$3x_1 - x_2 + x_3 - x_4 = 2$$

$$x_1 + 2x_2 - x_3 + x_4 = 1$$

$$6x_1 + 2x_2 + x_3 + x_4 = 5$$

If so, discuss completely the solution.

(7)

- 2. (a) Prove that a non-empty subset of a vector-space V is subspace of V if $u + v \in S$ and $\alpha u \in S$, whenever $u, v \in S$ and α , a scalar.
 - (b) Verify rank-nullity theorem for the linear transformation

$$T: V_4 \to V_3$$
 such that $T(e_1) = (1, 1, 2), T(e_2) = (1, -1, 1), T(e_3) = (1, 0, 0), T(e_4) = (1, 0, 1).$ (4+5)

- 3. (a) Prove that the vectors (a, b), (c, d) are LD iff ad = bc.
 - (b) Find the coordinates of the polynomial $3 + 7x + 2x^2$ relative to the ordered basis $\{1-x, 1+x, 1-x^2\}$ of \mathcal{P}_2 . (4+5)

SECTION B

1. Prove that the linear transformation

 $T: V_3 \to V_3$ such that $T(e_1) = e_1 + e_2$, $T(e_2) = e_1 - e_2 + e_3$, $T(e_3) = 3e_1 + 4e_3$, is non-singular and find its inverse.

(b) Determine eigenvalues and the corresponding eigenvectors for the following matrix

$$A = \left(\begin{array}{ccc} 0 & i & i \\ i & 0 & i \\ i & i & 0 \end{array}\right)$$

(5+5)

2. (a) Verify that the function

$$g(z) = \ln r + i\theta \qquad (r > 0, 0 < \theta < 2\pi)$$

is analytic in the indicated domain, with derivative g'(z) = 1/z

- (b) Show that $u(x,y) = y/(x^2+y^2)$ is harmonic in some domain D and find a function v(x,y) such that f(z) = u + iv is analytic in the domain D. (3+5)
- 3. (a) Find the principal value of $(1-i)^{4i}$.
 - (b) Show that (i) $Log(1+i)^2 = 2Log(1+i)$;

(ii)
$$Log(-1+i)^2 \neq 2Log(-1+i)$$
 (3+5)

SECTION C

1. (a) Show that

$$\int_C z^i dz = \frac{1+e^{-\pi}}{2}(1-i),$$

where z^i denotes the principal branch

$$z^i = \exp(i\text{Log}z)$$
 $(|z| > 0, -\pi < Argz < \pi)$

and where the path of the integartion is any contour from z = -1 to z = 1.

(b) Let C be any simple closed contour, described in the positive sense in the z plane, and

$$g(w) = \int_C \frac{z^3 + 2z}{(z-w)^3} dz.$$

2. (a) Find the value of the integral

$$\int_{c} \frac{\cosh \pi z}{z(z^2+1)} dz,$$

taken counterclockwise around the circle |z|=2.

(b) Determine whether that $z_0 = 0$ is removable singular point of the

$$f(z) = \frac{1 - \cos z}{z^2}$$

Hence or otherwise find f(0).

(c) Find the residue of the function

$$f(z) = \frac{z^2 - 2z + 3}{z - 2},$$

when $0 < |z-2| < \infty$.

(5+3+2)

3. (a) Use residues to evaluate the improper integral

$$\int_0^\infty \frac{x^2}{(x^2+1)(x^2+4)} dx.$$

(b) Use residues to evaluate

$$\int_0^{2\pi} \frac{d\theta}{1 + a\sin\theta}. \qquad (-1 < a < 1)$$

(5+5)