BITS PILANI - DUBAI CAMPUS

I YEAR – I SEMESTER 2012-2013

COMPREHENSIVE EXAM.(CB)

COURSE: Probability and Statistics Max. Marks: 120 Weightage: 40%

COURSE NO.: MATH F113/AAOC C111

Date: 08-01-2013 Duration: 3 hours

Instruction: 1. Write answers of Part-A, Part-B and Part-C in separate answer books.

2. Necessary table values are given in the question paper under heading "Table values".

3. Non-programmable calculator is permitted.

4. Attempt all the questions.

Table Values(as per standard notation): $t_{23,\,0.025}$ = 2.069, F(0.35) = 0.6379, F(2) =0.9772, F(-1) = 0.1587, $t_{99,0.025}$ = 1.984, $z_{0.05}$ = 1.645.

PART - A

- 1. There are three candidates A, B and C for a post of hostel warden. The candidates A and B have equal chance to be selected, but chance of C is half of that of A. If A is selected then there is a probability 0.4 that quality of life in the hostel will improve. Similarly, if B is selected then this probability is 0.5 and if C is selected this probability is 0.6.
 - a) Find the probability that
 - i) A will be selected;
 - ii) C will be selected.
 - b) Find the probability that C will be selected and the quality of life in the hostel will improve.
 - c) Find the probability that A will be selected but the quality of life in the hostel will not improve. [10]
- 2. The distribution of a random variable X is given in the following table:

х	2	4	6	8	10
f(x)	0.254	0.135	0.220	0.324	0.067

a) Find E(X) and Var(X).

[5]

b) Find $P(X \ge 4)$.

[2]

c) Find the moment generating function of X.

[3]

3. Assume that the increase in demand for electric power in millions of kilowatt hours in a particular area is a random variable with density function

$$f(x) = kx^3$$
, $0 < x < 2$.

a) Find the value of k.

[2]

b) Find $P(0.5 \le X \le 1.5)$ and $P(1 \le X \le 2.5)$.

[4]

c) Find $E(X^2 + 4X - 2)$.

[4]

- 4. The probability that a person can hit a given target in each firing is 0.45. He will fire 6 times.
 - a) What is the probability that he will hit the target at least 4 times?
 - b) What is the probability that he will miss the target at most 3 times?
 - c) What is the probability that he will fail to hit the target?

-[40]

PART-B

5. The joint pdf of two random variables X and Y is

$$f(x,y) = \frac{x(1+3y^2)}{4}; 0 < x < 2, 0 < y < 1$$

= 0; elsewhere

Find

- (a) $P(1 \le X \le 2, Y \le 0.5)$
- (b) f(x) i.e marginal density of x.
- (c) Conditional density of y given x, f(y/x).

[10]

- 6. Police response time to an emergency call is the time difference between the time the call is first received and the time that a patrol car has arrived at the scene. It has been observed that this response time follows normal distribution with mean 8.4 minutes and standard deviation 1.7 minutes.
 - a) What percentage of response times are longer than 9 minutes?
 - b) What percentage of response times are between 6.7 minutes and 11.8 minutes?

[10]

- 7. Sulphur dioxide and nitrogen oxide are both products of fossil fuel consumption. These compounds can be carried long distances and converted to acid before being deposited in the form of "acid rain". These data were obtained on the sulphur dioxide concentration (in micrograms per cubic meter) in a Bavarian forest thought to have been damaged by acid rain: 52.7, 43.9, 41.7, 71.5, 47.6, 55.1, 62.2, 56.5, 33.4, 61.8, 54.3, 50.0, 45.3, 63.4, 53.9, 65.5, 66.6, 70.0, 52.4, 38.6, 46.1, 44.4, 60.7, 56.4. Find 95% confidence interval on the mean sulphur dioxide concentration in this forest. [10]
- 8. a) Simulate a value of an exponential variable with β = 0.352. Use the random number 0.534.
 b) The number of mails that a department receives each day can be modeled by a distribution having mean 44 and standard deviation 8. From a random sample of 36 days, what can be said about the probability that the sample mean will be at most 42 or at least 46 using Chebychev's theorem?

[10]

PART - C

9. An automobile manufacturer substitutes a different engine in cars that were known to have an average miles-per-gallon rating of 31.5 on the highway. The manufacturer wants to test whether the new engine changes the average miles-per-gallon rating of the automobile model. A random sample of 100 trial runs gives $\bar{x} = 29.8$ miles per gallon and s = 6.6 miles per gallon. Using the 0.05 level of significance, is the average miles-per-gallon rating on the highway for cars using the new engine different from the rating for cars using the old engine?

- 10. An article describes how finance incentives by the major automakers are reducing banks' share of the market for automobile loans. The article reports that in 1980, banks wrote about 53% of all car loans, and in 1995, the banks' share was only 43%. Suppose that these data are based on a random sample of 100 car loans in 1980, where 53 of the loans were found to be bank loans; and the 1995 data are also based on a random sample of 100 loans, 43 of which were found to be bank loans. Carry out a two-tailed test of the equality of banks' share of the car loan market in 1980 and in 1995. Take α = 0.1.
- 11. Suppose that we had the following results from an experiment in which we measured the growth of a cell culture (as optical density) at different pH levels.

pH (x)	3	4	4.5	5	5.5	6	6.5	7	7.5
Optical Density	0.1	0.2	0.25	0.32	0.33	0.35	0.47	0.49	0.53

Find the regression equation y on x.

[10]

12. The following data are indexed prices of gold and copper over a 10 year period. Assume that the indexed values constitute a random sample from the population of possible values.

Gold	76	62	70	59	52	53	53	56	57	56
Соррег	80	68	73	63	65	68	65	63	65	66

Find the correlation coefficient.

[10]

BITS PILANI – DUBAI CAMPUS I YEAR – I SEMESTER 2012-2013 TEST– II(OB)

COURSE: Probability and Statistics

COURSE NO.: MATH F113/AAOC C111

Max. Marks: 60

Weightage: 20%

Date: 13-12-2012

Time: 8:00 am to 8:50 am

Prescribed Textbook and hand-written class notes are allowed. Non-programmable calculator is permitted.

Attempt all the questions.

1. Following table defines the joint density of two random variables X and Y:

Y	1	2	3	
1	0.05	0.10	0.20	
_ 2	0.05	0.10	0.10	
3	0.10	0.20	0.10	

a) Find P(X = 2 or Y > 2).

b) Find Cov(X,Y).

[12]

[8]

2. The joint density of two continuous random variables X and Y is defined as follows: $f(x,y) = k(x+y), \ 0 \le x \le 2, 0 \le y \le 2, x+y \ge 2$. Find the value of k.

- 3. Assume that a group is drilling wells in various parts of the country so that the status of one well has no bearing on that of any other. Let X denote the number of wells drilled to obtain the first strike. This random variable is said to follow geometric distribution with the parameter p unknown.
 - a) Find the maximum likelihood estimate for p based on a sample of size n.
 - b) Find the maximum likelihood estimate for p based on these data:

[10]

4. Suppose you do a study of acupuncture to determine how effective it is in relieving pain. You measure sensory rates for 15 subjects with the results given below. Use the sample data to construct a 95% confidence interval for the mean sensory rate for the population (assumed normal) from which you took the data.

- 5. The tensile strength of synthetic fibers can be determined by tying two strands together and pulling until either the right-or left hand side breaks If 144 pairs of strands will be broken, what does Chebychev's theorem with k=4 tell us about the number of cases where the left hand strand broke?
- 6. In a certain city, the number of power outages per month is a random variable having a distribution with $\mu = 11.6$ and $\sigma = 3.3$. If this distribution can be approximated closely with a normal distribution, what is the probability that there will be at least 8 outages in any one month?

TEST-I(CB)

COURSE: Probability and Statistics
Max. Marks: 75
Weightage: 25%

Oute: 21-10-2012

Duration: 8:00 am to 8:50 am

Attempt all the questions.

- 1. There are 18 students in an elective class and 10 of them are staying in the hostel. Ten students from this class are selected at random. Let X be the number of students in this group of selected students who are not staying in the hostel.
 - a) Find the possible values that X can take.
 - b) Write down the expression for the density function of X.
 - c) Find the probability that exactly 4 of these selected students are staying in the hostel.

[15]

[10]

- 2. A defective production process produces defective products in a Poisson process with an average 0.2 defective per hour. The process runs for 6- hour a day.
 - a) Find the probability that there will be at least 2 defectives in a period of 2 days.
 - b) Find the probability that there will be no defective in a period of 3 days.
- 3. The probability that the noise level of a wide band amplifier will exceed 2 dB is 0.05.
 - (i) Find the probabilities that among 12 such amplifiers the noise level of
 - (a) At most two will exceed 2 dB
 - (b) Exactly 3 will exceed 2 dB.
 - (ii) On an average the noise level of how many amplifiers will exceed 2 dB.

[10]

- 4. In a bolt producing factory, machine A, B and C are producing 30%, 30% and 40% items respectively. Machine A is producing 2% defective items, B and C are producing 4% and 5% defective items of their total production. One bolt is chosen at random from a large lot of bolts produced by this factory.
 - (a) What is the probability that this chosen bolt is defective?
 - (b) If this chosen bolt is defective, find the probability that this bolt is produced by machine C. [15]
- 5. Assume that the time it takes a student to walk from one class to the next class ranges uniformly from 0 to 15 minutes.
 - a) State the density function f(x)
 - b) What is the probability that a student will be late to his next class if there is a 10-minute break between classes
 - c) What is the probability that it will take the student between 5 and 13 minutes to get to class?

6. In a certain city, the daily consumption of electric power (in millions of kilowatt hours) is a random variable X having the probability density

$$f(x) = \begin{cases} ke^{-x/3}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

- a) Find the value of k.
- b) Find the cumulative distribution function F(x) of X.
- c) If the city's power plant has a daily capacity of 12 million kilowatt-hours, what is the probability that this power supply will be inadequate on any given day?

[15]

QUIZ-II(CB)

COURSE: Probability and Statistics	COURSE	NO.: AAOC CITI/MATH FIT3
Max. Marks: 21 Weightage: 7%	Date: 22-11-2012	Time: 12:20 pm to 12:40 pm
NAME:	ID. NO.:	SEC:
Attempt all the questions. No marks will be Each question carries 3 marks. No extra sh is permitted.		
Fill in the blanks with correct answe 1. Consider the function $f(x) = k \ln x$		ction defines the density function
	Į.	
of a continuous random variable, t	the value of k is $\underline{\chi}$	4-2
2. If one parameter of a uniform distr	ribution is -4 and the	mean is -2 , then the other
parameter is		
3. The joint density of two random va	ariables X and Y is give	n below:
$\begin{bmatrix} Y \\ X \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	0 1 2 0 0.1 0.1 0.1 0 0.1 0.1 0.1 0 0.1 0.1 0 0.1 0 0.3	
The value of $E(X) = 2 \cdot 8$	and $E(Y) = 1.2$	<u>. </u>
4. The joint density of two random va	riables X and Y is $f(x)$	$(y) = kx^3y^3, 0 \le x \le 2, 0 \le y \le 2$
The value of k is $\sqrt{ b }$.		-2-
5. If X follows exponential distribution	n with mean 1.5, then I	$P(X \ge 3) = \underline{\mathcal{C}}$
5. The weight of randomly chosen l		
deviation 50 pounds. Using Chebys	shev's inequality the lo	ower bound of the probability

7. If the random variable X has Weibull distribution with parameters $\alpha = 2$ and $\beta = 3$, then $E(X) = \frac{1}{3\sqrt{2}} \sqrt{4} \sqrt{12}$ and $Var(X) = \frac{1}{3\sqrt{4}} \sqrt{12} \sqrt{12} \sqrt{12}$

that the weight of randomly chosen bottle deviates more than 100 pounds from the

$\mathbf{QUIZ} - \mathbf{II}(\mathbf{CB})$

COURSE: Probability and Statistics			SE NO.: AAOC C111/MATH F113
M	Max. Marks: 21 Weightage: 7%	Date: 22-11-20	2 Time: 12:20 pm to 12:40 pm
N	IAME:	ID. NO.:	SEC:
E	ttempt all the questions. No marks will be a ach question carries 3 marks. No extra she permitted.		
	ill in the blanks with correct answer Consider the function $f(x) = k \ln x$		function defines the density function
	of a continuous random variable, the	he value of k is _	
2.	If one parameter of a uniform distr	ibution is -4 and	the mean is -2, then the other
	parameter is		
3.	The joint density of two random va	ariables X and Y is	given below:
	$\begin{array}{c c} X \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline \end{array}$	0 1 2 0 0.1 0.1 0.1 0 0.1 0.1 0.1 0 0.1 0 0.3	
	The value of $E(X) = $	and $E(Y) = \underline{\hspace{1cm}}$	
4.	The joint density of two random va	riables X and Y is	$f(x,y) = kx^3y^3, 0 \le x \le 2, 0 \le y \le 2.$
	The value of k is		
5.	If X follows exponential distribution	n with mean 1.5, the	$P(X \ge 3) = \underline{\hspace{1cm}}$
6.	The weight of randomly chosen l	bottle has expecte	ed value 400 pounds and standard
	deviation 50 pounds. Using Cheby	shev's inequality	the lower bound of the probability
	that the weight of randomly chos	sen bottle deviate	s more than 100 pounds from the
	expected value of the weight is	·	
7.	If the random variable X has Weibu	all distribution wit	h parameters $\alpha = 2$ and $\beta = 3$, then
	$E(X) = \underline{\qquad}$ and $Var(X) = \underline{\qquad}$		•

QUIZ – II(CB)

	COURSE: Probability and Statistics Max. Marks: 21 Weightage: 7% COURSE NO.: AAOC C111/MATH F113 Date: 22-11-2012 Time: 12:20 pm to 12:40 pm
N	JAME: ID. NO.: SEC:
E	ttempt all the questions. No marks will be awarded for overwriting and multiple answers. Do not use penci ach question carries 3 marks. No extra sheet will be given for rough works. Non-programmable Calculato permitted.
	ill in the blanks with correct answers: Consider the function $f(x) = k \ln x$, $2 \le x \le 3$. If this function defines the density function
	of a continuous random variable, the value of k is
2.	If one parameter of a uniform distribution is -4 and the mean is 2, then the other
	parameter is
3.	The joint density of two random variables X and Y is given below:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	The value of $E(X) = \underline{\qquad}$ and $E(Y) = \underline{\qquad}$.
4.	The joint density of two random variables X and Y is $f(x, y) = kx^2y^2$, $0 \le x \le 2$, $0 \le y \le 2$
	The value of k is
5.	If X follows exponential distribution with mean 1.5, then $P(X \ge 1.5) =$
6.	The weight of randomly chosen bottle has expected value 400 pounds and standard
	deviation 50 pounds. Using Chebyshev's inequality the lower bound of the probability
-	that the weight of randomly chosen bottle deviates more than 200 pounds from the
	expected value of the weight is
7.	If the random variable X has Weibull distribution with parameters $\alpha = 2$ and $\beta = 2$, then
	$E(X) = \underline{\qquad}$ and $Var(X) = \underline{\qquad}$

QUIZ - II(CB)

	RSE: Probab Marks: 21	oility and Statistics Weightage: 7%				C111/MAT :20 pm to 1	
NAM	E:		ID. NO.:				SEC:
Attemp Each qu is perm	uestion carries	ons. No marks will be av 3 marks. No extra shee	varded for ove t will be given	rwriting an for rough	d multiple an works. Non-p	swers. Do not rogrammable	use pencil Calculator
		with correct answers unction $f(x) = k \ln x$,		this func	tion define	s the density	function
of	a continuous	random variable, the	e value of k	is	·		
2. If c	one paramete	er of a uniform distrib	oution is -2	and the	mean is	4, then t	he other
par	ameter is	•					
3. The	e joint densit	y of two random var	iables X and	Y is give	n below:		
		$\begin{array}{c cccc} X & 0 \\ \hline 1 & 0 \\ 2 & 0 \\ \hline 3 & 0 \\ 4 & 0 \\ \end{array}$	0.1 1 0 2 0.1	0.2 0 0 0 0.1			
		(X) =		•			
4. The	joint density	y of two random var	iables X and	Y is $f(x)$	$(x,y)=kx^2y^3$	$0 \le x \le 1, 0$	$\leq y \leq 2$.
The	value of k is	S					
5. If <i>X</i>	follows exp	onential distribution	with mean 2	, then $P($	<i>X</i> ≥ 2) =	·	
6. The	weight of	randomly chosen bo	ottle has ex	pected va	lue 500 p	ounds and	standard
devi	ation 100 pc	ounds. Using Chebys	hev's inequ	ality the l	ower boun	d of the pro	bability
that	the weight	of randomly chosen	n bottle dev	riates mo	re than 20	0 pounds f	rom the
expe	cted value o	f the weight is	·				
. If the	e random va	riable X has Weibull	distribution	with par	ameters α	$= 2$ and $\beta =$	1, then
E(X	(i) =	and $Var(X) = $	·	÷			

QUIZ - II(CB)

	OURSE: Probability and Statistics [As Marks: 21 Weightage: 7% Date: 22-11-2012 Time: 12:20 pm to 12:40 pm]
N	AME: ID. NO.: SEC:
Ea	tempt all the questions. No marks will be awarded for overwriting and multiple answers. Do not use pencil, ach question carries 3 marks. No extra sheet will be given for rough works. Non-programmable Calculator permitted.
F 1	Ill in the blanks with correct answers: Consider the function $f(x) = k \ln x$, $1 \le x \le 3$. If this function defines the density function
	of a continuous random variable, the value of k is
2.	If one parameter of a uniform distribution is -2 and the mean is 2, then the other
	parameter is
3.	The joint density of two random variables X and Y is given below:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	The value of $E(X) = \underline{\hspace{1cm}}$ and $E(Y) = \underline{\hspace{1cm}}$.
ŧ.	The joint density of two random variables X and Y is $f(x, y) = kx^2y^2$, $0 \le x \le 1$, $0 \le y \le 2$.
	The value of k is
ί.	If X follows exponential distribution with mean 1.5, then $P(X \ge 2) =$
·),	The weight of randomly chosen bottle has expected value 500 pounds and standard
,	deviation 100 pounds. Using Chebyshev's inequality the lower bound of the probability
	that the weight of randomly chosen bottle deviates more than 300 pounds from the
	expected value of the weight is
,	If the random variable X has Weibull distribution with parameters $\alpha = 1$ and $\beta = 2$, then
	E(X) = and $Var(X) =$

$\mathbf{QUIZ} - \mathbf{II}(\mathbf{CB})$

	COURSE: Probability and Statistics AAOC C111/MATH F113 Iax. Marks: 21 Weightage: 7% Date: 22-11-2012 Time: 12:20 pm to 12:40 pm
N	AME: ID. NO.: SEC:
Εđ	ttempt all the questions. No marks will be awarded for overwriting and multiple answers. Do not use pencil ach question carries 3 marks. No extra sheet will be given for rough works. Non-programmable Calculato permitted.
F i	ill in the blanks with correct answers: Consider the function $f(x) = k \ln x$, $1 \le x \le 2$. If this function defines the density function
	of a continuous random variable, the value of k is
2.	If one parameter of a uniform distribution is -2 and the mean is 4, then the other
	parameter is
3.	The joint density of two random variables X and Y is given below:
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	The value of $E(X) = \underline{\hspace{1cm}}$ and $E(Y) = \underline{\hspace{1cm}}$
4.	The joint density of two random variables X and Y is $f(x, y) = kx^2y^3$, $0 \le x \le 1$, $0 \le y \le 2$.
	The value of k is
5.	If X follows exponential distribution with mean 2, then $P(X \ge 2) = $
5.	The weight of randomly chosen bottle has expected value 500 pounds and standard deviation 100 pounds. Using Chebyshev's inequality the lower bound of the probability that the weight of randomly chosen bottle deviates more than 200 pounds from the expected value of the weight is
	If the random variable X has Weibull distribution with parameters $\alpha = 2$ and $\beta = 1$, then
	$E(X) = \underline{\hspace{1cm}}$ and $Var(X) = \underline{\hspace{1cm}}$.

$QUIZ - \Pi(CB)$

	COURSE: Probability and Statistics COURSE NO.: AAOC C111/MATH F11 Max. Marks: 21 Weightage: 7% Date: 22-11-2012 Time: 12:20 pm to 12:40 pm	
N	AME: ID. NO.: SEC:	
E_{i}	ttempt all the questions. No marks will be awarded for overwriting and multiple answers. Do not use per ach question carries 3 marks. No extra sheet will be given for rough works. Non-programmable Calcul permitted.	
	ill in the blanks with correct answers: Consider the function $f(x) = k \ln x$, $1 \le x \le 3$. If this function defines the density funct	ion
	of a continuous random variable, the value of k is	
2.	If one parameter of a uniform distribution is -2 and the mean is 2, then the ot	her
	parameter is	
3.	The joint density of two random variables X and Y is given below:	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	The value of $E(X) = \underline{\hspace{1cm}}$ and $E(Y) = \underline{\hspace{1cm}}$.	-
4.	The joint density of two random variables X and Y is $f(x, y) = kx^2y^2$, $0 \le x \le 1$, $0 \le y \le 1$	2.
	The value of k is	
5.	If X follows exponential distribution with mean 1.5, then $P(X \ge 2) =$	
6.		ırd
	deviation 100 pounds. Using Chebyshev's inequality the lower bound of the probability	ity
	that the weight of randomly chosen bottle deviates more than 300 pounds from t	he
	expected value of the weight is	
7.	If the random variable X has Weibull distribution with parameters $\alpha = 1$ and $\beta = 2$, th	en
	E(X) = and $Var(X) =$	

QUIZ – II(CB)

		COURSE NO.: AAOC C111/MATH F11 Date: 22-11-2012 Time: 12:20 pm to 12:40 pm				
N	NAME: ID. NO.:			SEC:		
E	Attempt all the questions. No marks will be awarded for over Each question carries 3 marks. No extra sheet will be given j is permitted.					
	Fill in the blanks with correct answers: 1. Consider the function $f(x) = k \ln x$, $2 \le x \le 3$. If	this func	ction defines the	e density function		
	of a continuous random variable, the value of k	is	· ·			
2.	2. If one parameter of a uniform distribution is -4	and the	e mean is 2,	then the other		
	parameter is					
3.	3. The joint density of two random variables X and	Y is give	n below:			
	$ \begin{array}{c cccc} Y & 0 & 1 \\ \hline 1 & 0 & 0.1 \\ \hline 2 & 0.1 & 0 \\ \hline 3 & 0.2 & 0.1 \\ \hline 4 & 0.2 & 0 \\ \hline \end{array} $	2 0.1 0.1 0 0.1				
	The value of $E(X) = \underline{\hspace{1cm}}$ and $E(Y) = \underline{\hspace{1cm}}$					
4:	4. The joint density of two random variables X and	Y is $f(x)$	$(y) = kx^2y^2, 0 \le$	$ x \le 2, \ 0 \le y \le 2 . $		
	The value of k is			·.		
5.	5. If X follows exponential distribution with mean 1	.5, then	$P(X \ge 1.5) = _$			
	6. The weight of randomly chosen bottle has expected value of the weight is	lity the l	الله و بر wer bound of	the probability		
7.	7. If the random variable X has Weibull distribution	ı with pa	rameters $\alpha = 2$	and $\beta = 2$, then		
	$E(X) = \underline{\qquad}$ and $Var(X) = \underline{\qquad}$.					

$\mathbf{QUIZ} - \mathbf{II}(\mathbf{CB})$

	COURSE: Probability and Statistics Max. Marks: 21 Weightage: 7% COURSE NO.: AAOC C111/MATH F113 Date: 22-11-2012 Time: 12:20 pm to 12:40 pm					
N	AME: ID. NO.: SEC:					
E_{i}	tempt all the questions. No marks will be awarded for overwriting and multiple answers. Do not use pencil. ach question carries 3 marks. No extra sheet will be given for rough works. Non-programmable Calculaton permitted.					
	ill in the blanks with correct answers: Consider the function $f(x) = k \ln x$, $2 \le x \le 4$. If this function defines the density function					
	of a continuous random variable, the value of k is					
2.	If one parameter of a uniform distribution is -4 and the mean is -2 , then the other					
	parameter is					
3.	The joint density of two random variables X and Y is given below:					
-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	The value of $E(X) = \underline{\hspace{1cm}}$ and $E(Y) = \underline{\hspace{1cm}}$.					
4.	The joint density of two random variables X and Y is $f(x, y) = kx^3y^3$, $0 \le x \le 2$, $0 \le y \le 2$.					
	The value of k is					
5.	If X follows exponential distribution with mean 1.5, then $P(X \ge 3) = $					
5.	The weight of randomly chosen bottle has expected value 400 pounds and standard					
	deviation 50 pounds. Using Chebyshev's inequality the lower bound of the probability					
	that the weight of randomly chosen bottle deviates more than 100 pounds from the					
	expected value of the weight is					
7.	If the random variable X has Weibull distribution with parameters $\alpha = 2$ and $\beta = 3$, then					
	$E(X) = \underline{\hspace{1cm}}$ and $Var(X) = \underline{\hspace{1cm}}$.					

QUIZ - I(CB)

	COURSE: Probability and Statistics Max. Marks: 24 Weightage: 8% COURSE NO.: AAOC C111/MATH F113 Date: 03-10-2012 Duration: 8:00 am to 8:20 am
ľ	NAME: ID. NO.: SEC:
E	Attempt all the questions. No marks will be awarded for overwriting and multiple answers. Do not use pencil. Each question carries 3 marks. No extra sheet will be given for rough works. Non-programmable Calculator s permitted.
F	Fill in the blanks with correct answers:
1	. In T20 matches, the probability that Virender Sehwag remains notout for five overs is
	0.25. If he remains notout for five overs, there is a probability 0.75 that India will win the
	match. The probability that Vireder Sehwag will remain notout for five overs and India
	will lose the match is
2.	If for any two events A and B, $P(A \cup B) = 0.6$ and $P(A \cap B) = 0.3$, then
	$P(A)+P(B)=\underline{\hspace{1cm}}.$
3.	If for two independent events A and B, $P(B) = 0.8$ and $P(A \cap B) = 0.5$, then $P(A) = $
4.	Number of different ways that one can make a first, second, third and fourth choice
	among 12 firms leasing construction equipment is
5.	In tossing three coins at a time, the probability of getting exactly one head is
6.	If $E(X) = 5$ and $Var(X) = 2$, then $E(2X - 5) = $ and $Var(2X - 5) = $
7.	Consider a discrete random variable X that can assume the values 0, 1, 2 and 3 with
	probabilities 0.15, 0.28, 0.4 and 0.17 respectively. The value of $E(X^2)$ is
3.	If the mean of a geometric distribution is 4, the variance is

QUIZ - I(CB)

COURSE: Probability and Statistics Max. Marks: 24 Weightage: 89			NO.: AAOC C111/MATH F113 Duration: 8:00 am to 8:20 am
Ì	NAME:	ID. NO.:	SEC:
1	Attempt all the questions. No marks Each question carries 3 marks. No s permitted.	s will be awarded for overwriting an extra sheet will be given for rough	nd multiple answers. Do not use pencil. works. Non-programmable Calculator
1	Fill in the blanks with correct	t answers:	•
1	. In T20 matches, the proba	ability that Virender Sehwag	remains notout for five overs is
	0.25. If he remains notout to	for five overs, there is a proba	bility 0.75 that India will win the
	match. The probability tha	t Vireder Sehwag will remain	n notout for five overs and India
	will lose the match is	·	
2.	If for any two events	A and B , $P(A \cup B) = 0$.	4 and $P(A \cap B) = 0.3$, then
	$P(A)+P(B)=\underline{\hspace{1cm}}.$		
3.	If for two independent even	ats A and B, $P(B) = 0.6$ and $P(B) = 0.6$	$(A \cap B) = 0.5$, then $P(A) = $
4.	Number of different ways	that one can make a first, s	second, third and fourth choice
	among 9 firms leasing const	truction equipment is	<u> </u>
5.	In tossing two coins at a tim	ne, the probability of getting ex	cactly one head is
5.	If $E(X) = 5$ and $Var(X) = 4$	4, then $E(2X-5) = $	_ and $Var(2X-5) = $
·.	Consider a discrete random	1 variable X that can assume	the values 0, 1, 2 and 3 with
	probabilities 0.15, 0.2, 0.48 a	and 0.17 respectively. The va-	lue of $E(X^2)$ is
	If the mean of a geometric di	istribution is 2 the variance is	

QUIZ - I(CB)

	COURSE: Probability and Statistics Max. Marks: 24 Weightage: 8% COURSE NO.: AAOC C111/MATH F113 Date: 03-10-2012 Duration: 8:00 am to 8:20 am		
	NAME: ID. NO.: SEC:		
À	Attempt all the questions. No marks will be awarded for overwriting and multiple answers. Do not use penc Each question carries 3 marks. No extra sheet will be given for rough works. Non-programmable Calculat is permitted,	il. or	
i	Fill in the blanks with correct answers:		
1	. In T20 matches, the probability that Virender Sehwag remains notout for five overs i	s	
	0.2. If he remains notout for five overs, there is a probability 0.8 that India will win th	e	
	match. The probability that Vireder Sehwag will remain notout for five overs and Indi	a	
	will lose the match is		
2	If for any two events A and B, $P(A \cup B) = 0.4$ and $P(A \cap B) = 0.2$, then	1	
	$P(A) + P(B) = \underline{\hspace{1cm}}.$		
3.	If for two independent events A and B, $P(B) = 0.8$ and $P(A \cap B) = 0.2$, then $P(A) = $		
4.	Number of different ways that one can make a first, second, third and fourth choice	;	
	among 11 firms leasing construction equipment is		
5.	In tossing two coins at a time, the probability of getting at most one head is		
5.	If $E(X) = 8$ and $Var(X) = 4$, then $E(2X - 5) = $ and $Var(2X - 5) = $		
7.	Consider a discrete random variable X that can assume the values 0, 1, 2 and 3 with		
	probabilities 0.18, 0.28, 0.44 and 0.1 respectively. The value of $E(X^2)$ is		
	If the mean of a geometric distribution is 8, the variance is		

QUIZ - I(CB)

	COURSE: Probab Max. Marks: 24	ility and Statistics Weightage: 8%	COURS) Date: 03-10-20		OC C111/MATH F113 tion: 8:00 am to 8:20 am
Ī	NAME:		ID. NO.:		SEC:
E					e answers. Do not use pencil on-programmable Calculato
I	Fill in the blanks w	vith correct answers.	•		•
1	. In T20 matches	, the probability tha	t Virender Sehwa	ng remains	notout for five overs is
	0.25. If he rema	ins notout for five ov	vers, there is a pro	bability 0.8	5 that India will win the
	match. The prob	pability that Vireder	Sehwag will rem	ain notout	for five overs and India
	will lose the mat	ch is	. •		
2.	If for any tw	vo events A and	$B, P(A \cup B) =$	0.6 and	$P(A \cap B) = 0.2$, then
	$P(A) + P(B) = _$	·		·	
3.	If for two indepe	ndent events A and I	P(B) = 0.8 and	$P(A \cap B) =$	= 0.4, then $P(A) = $
4.	Number of diffe	erent ways that one	can make a first	, second, t	hird and fourth choice
	among 10 firms l	easing construction	equipment is		
5.	In tossing three	coins at a time,	the probability	of getting	at most one head is
6.	If $E(X) = 8$ and	Var(X) = 2, then E	(2X-5) =	and V	$ar(2X-5) = \underline{\hspace{1cm}}.$
7.	Consider a discre	ete random variable	X that can assur	ne the valu	nes 0, 1, 2 and 3 with
	probabilities 0.18	, 0.28, 0.4 and 0.14 r	respectively. The	value of E	(X^2) is
3.	If the mean of a g	eometric distributior	is 5, the variance	is	·

Page 1 of 1