BITS PILANI, DUBAI CAMPUS

INTERNATIONAL ACADEMIC CITY, DUBAI FIRST YEAR – I SEMESTER (2012-13)

MATHEMATICS-I (MATH C191 / MATH F111) COMPREHENSIVE EXAMINATION (CLOSED BOOK)

Date: 10.01.2013 Time: 3 hours Max. Marks: 120 Weightage: 40 %

Answer Part A and Part B in separate Answer Books. Answer all the questions.

PART A

- 1. Find the area of the region inside the circle r = 6 above the line $r = 3\cos ec\theta$. (7)
- 2. If $e = \frac{1}{3}$ and $r \sin \theta = -6$, find the polar equation of the conic and sketch it by labeling the vertices, centre and foci with the appropriate polar coordinates (7)
- 3. If $f(x) = x^2 5$, $x_0 = 4$, $\varepsilon = 0.05$, L = 11 find a number $\delta > 0$ such that for all x: $0 < |x x_0| < \delta \Rightarrow |f(x) L| < \varepsilon$ by finding an open interval about x_0 such that the inequality holds?
- 4. Find the point on the curve $\vec{r}(t) = 2t \ \hat{i} + 3\sin(2t) \hat{j} + 3\cos(2t) \ \hat{k}$ at a distance $\frac{\pi\sqrt{10}}{3}$ units along the curve from the origin in the direction of increasing arc length. (7)
- 5. Find $\hat{T}_i \hat{N}$ and curvature for the curve $\vec{r}(t) = \cos^3 t \, \hat{i} + \sin^3 t \, \hat{j}$, $0 < t < \frac{\pi}{2}$ (8)
- 6. Without finding \hat{T} and \hat{N} , find $\vec{a} = a_T \hat{T} + a_N \hat{N}$ for the curve $\vec{r}(t) = e^t \cos t \ \hat{i} + e^t \sin t \ \hat{j} + \sqrt{2} \ e^t \ \hat{k} \ \text{at} \ t = 0 \tag{7}$
- 7. Using the chain rule, find the first order derivatives of W at (u, v) = (-2, 0) if $W = \ln(x^2 + y^2 + z^2)$, $x = u e^v \sin v$, $y = u e^v \cos v$, $z = u e^v$ (8)
- 8. Find the directions in which the function increases and decreases most rapidly at P₀: $f(x, y, z) = \ln(xy) + \ln(yz) + \ln(xz) \text{ at P}_0(1, 1, 1) \text{ and find the derivative in those directions.}$ (5)

PART B

1. Find all the local maxima, local minima and saddle points of the function:

$$f(x, y) = x^3 + y^3 + 3x^2 - 3y^2 - 8$$
(9)

2. Evaluate the integral by changing to polar coordinates:
$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{2 \, dy \, dx}{(1+x^2+y^2)^2}$$
 (8)

- 3. Find the volume of the region in the first octant bounded by the coordinate planes and the plane x + y + z = 4 (8)
- 4. Using the transformation u = x y, v = 2x + y, evaluate $\iint_R (2x^2 xy y^2) dx dy$ where R is the region in the \underline{xy} plane bounded by the lines y = -2x + 4, y = -2x + 7, y = x 2 and y = x + 1 in the first quadrant. (8)
- 5. Evaluate $\int_{C} f(x, y) ds$ along the curve $C : y = \frac{1}{2}x^{2}$ from (1, 1/2) to (0, 0), where $f(x, y) = \frac{x + y^{2}}{\sqrt{1 + x^{2}}}$ (8)
- 6. Apply Green's theorem to find $\int_C (2x^2 y^2) dx + (x^2 + y^2) dy$ where C is the boundary of the region enclosed by the x-axis and the upper half of circle $x^2 + y^2 = a^2$. (8)
- 7. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ by Stoke's theorem, where $\vec{F} = y^2 i + x^2 j (x+z)k$ and C is the boundary of triangle with vertices at (0, 0, 0), (1, 0, 0) and (1, 1, 0).
- 8. Test whether the following series convergence or divergence: (8) $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^3}$
 - b) $\sum_{n=1}^{\infty} \left(\frac{\tan^{-1} n}{\frac{1}{e^{n}}} \right)^{n}$

ALL THE BEST!

BITS PILANI, DUBAI CAMPUS INTERNATIONAL ACADEMIC CITY, DUBAI

First Year - Semester (2012-13)

MATHEMATICS-I (MATH F111/MATH C191)

TEST - 2 (Open Book)

Date: 20.12. 2012 Time: 50 minutes Max. Marks: 60 Weightage: 20%

Answer all the questions Only the handwritten class notes and the text book are permitted

1. Find the extreme values of $a^3x^2 + b^3y^2 + c^3z^2$ subject to the constraint $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ using the Lagrange's multiplier method. (8)

2. Evaluate: $\int_{0}^{1} \int_{0}^{\sqrt{1+x^2}} \frac{dy \, dx}{1+x^2+y^2}$ (8)

3. Evaluate the integral by changing to polar coordinates: $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{x \, dy \, dx}{\sqrt{x^2+y^2}}$ (9)

4. Using the transformation x + y = u and y = v, evaluate $\int_{0}^{\pi} \int_{0}^{\pi} |\cos(x + y)| dx dy$ (9)

5. If $\vec{F}(x, y, z) = (2x\cos y - 2z^3)\hat{i} + (3 + 2ye^z - x^2\sin y)\hat{j} + (y^2e^z - 6xz^2)\hat{k}$, check whether the vector field \vec{F} is conservative. If so, find the potential function. (9)

- 6. A particle starts from the point (-2, 0) moves along the x-axis to (2, 0) and then along the semicircle $y = \sqrt{4 x^2}$ to the starting point. Verify Green's theorem on this particle by the force $\vec{F}(x,y) = x \ \hat{i} + (x^3 + 3xy^2) \hat{j}$.
- 7. Use divergence theorem to evaluate $\int_{S} \vec{F} \cdot \hat{n} \, ds$ where S is a cube bounded by the planes $x = \pm a$, $y = \pm a$, $z = \pm a$ and $\vec{F}(x,y,z) = (x^3 3y^2z)\hat{i} + (y^3 5z^2x)\hat{j} + (z^3 9x^2y)\hat{k}$ (8)

ALL THE BEST!

BITS PILANI, DUBAI CAMPUS INTERNATIONAL ACADEMIC CITY, DUBAI

First Year – First Semester (2012-13)

MATHEMATICS-I (MATH F111/MATH C191)

TEST - 1 (Closed Book)

Date: 04.11.2012 Time: 50 minutes

Max. Marks: 75 Weightage: 25%

Answer all the questions

1. Given
$$\frac{d^2\vec{r}}{dr^2}(t) = t \ \hat{j} + t \ \hat{k}$$
, find the velocity and position vectors when $\left(\frac{d\vec{r}}{dt}\right)(1) = 5 \hat{j}$ and $\vec{r}(1) = 0$. Evaluate the position vector when $t = 2$. (11)

2. The position vector of a particle in the xy-plane at time t is given by

 $\vec{r}(t) = (6\cos t)\hat{i} + (3\sin t)\hat{j}, \ t = \frac{\pi}{4}$. Graph the path of the curve and sketch their velocity and acceleration vectors at the given value of t. (11)

3. (a) If $f(x,y) = \frac{1}{\sqrt{16-x^2-y^2}}$, find the function's domain and its range. Also find the level curve.

Check whether the domain is open/closed and bounded/unbounded.

- (b) Show that the function $f(x,y) = \frac{x^2 + y^3}{x^2}$ does not have a limit at the origin. (5)
- 4. Check whether the given function $f(x, y) = \tan^{-1} \left(\frac{y}{x}\right)$ satisfies the Laplace equation. (9)
- 5. By using the chain rule, find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ of w = xy + yz + zx with x = u + v, y = u v, z = uv at

$$(u,v) = \left(\frac{1}{2},1\right). \tag{11}$$

6. Find \hat{T} , \hat{N} and curvature for the curve $\vec{r}(t) = \cos^3 t \ \hat{i} + \sin^3 t \ \hat{j}$, $0 < t < \frac{\pi}{2}$ (11)

7. Write \vec{a} in the form $\vec{a}(t) = a_T \hat{T} + a_N \hat{N}$ at the given value of t without finding \hat{T} and \hat{N} :

$$\vec{r}(t) = t^2 \hat{i} + \left(t + \frac{t^3}{3}\right) \hat{j} + \left(t - \frac{t^3}{3}\right) \hat{k}, \quad t = \frac{1}{\sqrt{2}}$$
(11)

ALL THE BEST!

(6)

BITS, Pilani - Dubai Campus Dubai International Academic City, Dubai First year – I Semester 2012 – 2013 Mathematics I (MATH F111/MATH C191)

A

Quiz - 2

Time: 20 Minutes

Max Marks: 21

21.10.2012

Weightage: 7%

Section:

Name:

ID:

Answer all the questions:

1) Find the linear approximation of
$$f(x, y, z) = z^2 + 2y\cos(x^2 + 5)$$
 at the point $(0, 1, 4)$. (4)

2) Find
$$f_x$$
 when $f(x, y, z) = x^2 y + \frac{1}{\sqrt{x^2 + y^2 + z^2}} + \tan^{-1}(xyz)$. (4)

3) Find the directional derivative of the function
$$f(x, y, z) = 2z^3 - 3x^2z + \sin^2 y$$
 at $(1, \frac{\pi}{4}, 1)$ in the direction of $\overrightarrow{A} = -3i + j - 6k$.

4) Find the equation of tangent plane to the surface $x^2 + y^2 - 2xy - x + 3y - z = -4$ at (2,-3, 18). (4)

5) Find the extreme point(s) (max or min) and the corresponding value(s) of $f(x, y) = \frac{1}{x} + xy + \frac{1}{y}$. (5)

BITS Pilani, Dubai Campus **Dubai International Academic City, Dubai** First year - I Semester 2012 - 2013 Mathematics I (MATH F111/MATH C191)

Quiz - 1

Max Marks: 24

17.10.2012

Weightage: 8%

Section:

Time: 20 Minutes

Name:

ID:

Answer all the questions:

1. Find the area of the region shared by r=1 and $r=1+\sin\theta$.

(5)

2. Find the polar coordinates of the foci, centre and vertices of the ellipse $r = \frac{12}{2 - \cos \theta}$ (5)

3. Plot the graph of
$$|r| > 2$$
, $0 \le \theta \le \frac{\pi}{2}$

4. For
$$f(x) = \sqrt{19-x}$$
, $x_0 = 10$, $L = 3$, $\varepsilon = 1$, find a value for δ such that, for all x satisfying $0 < \left| x - x_0 \right| < \delta$, the inequality $\left| f(x) - L \right| < \varepsilon$ is valid. (5)

5. Find
$$\lim_{x \to 1^-} \left(\frac{1}{x}\right) \left(\frac{x+6}{x}\right) \left(\frac{3-x}{7}\right)$$
 (5)